

12. BEYOND CONVOLUTIONAL NEURAL NETWORKS

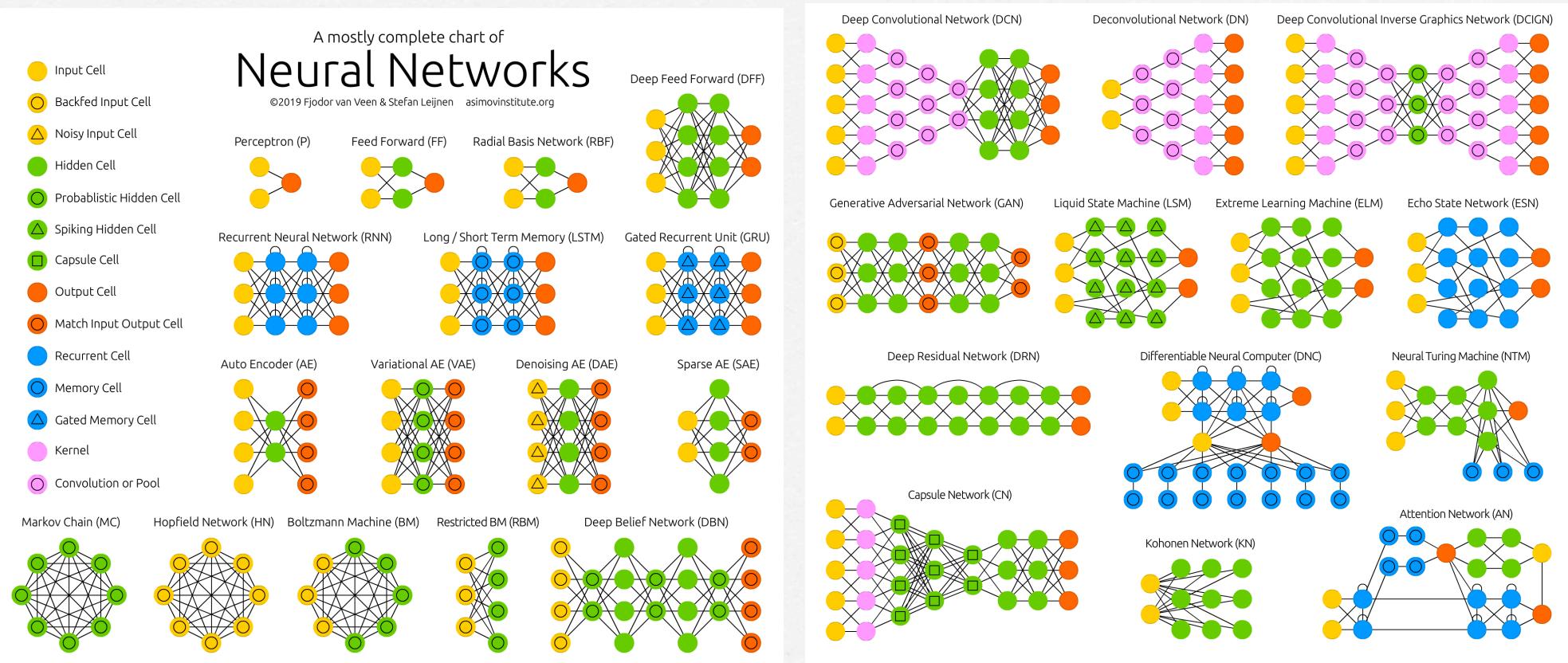
Stephan Robert-Nicoud
HEIG-VD/HES-SO

Credit: Andres Perez-Uribe

Objectives

- Understand the principles behind encoder-decoder neural architectures
- Understand the capabilities of recurrent neural network architectures
- Recognize the sort of problems that can be treated with recurrent neural networks
- Analyze the motivations that have driven the development of novel architectures

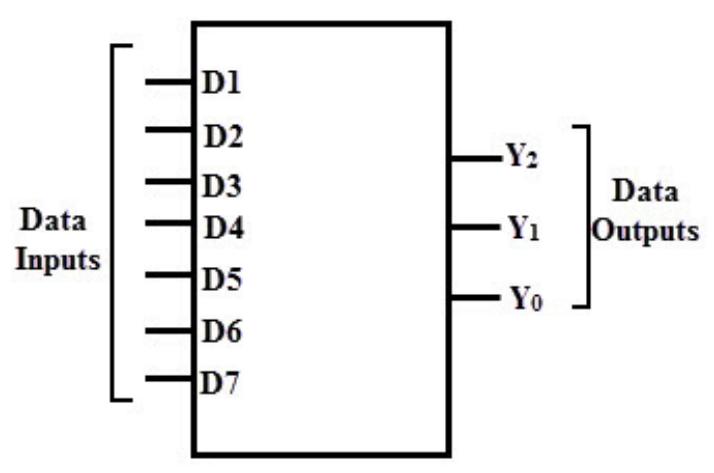
The Neural Networks zoo



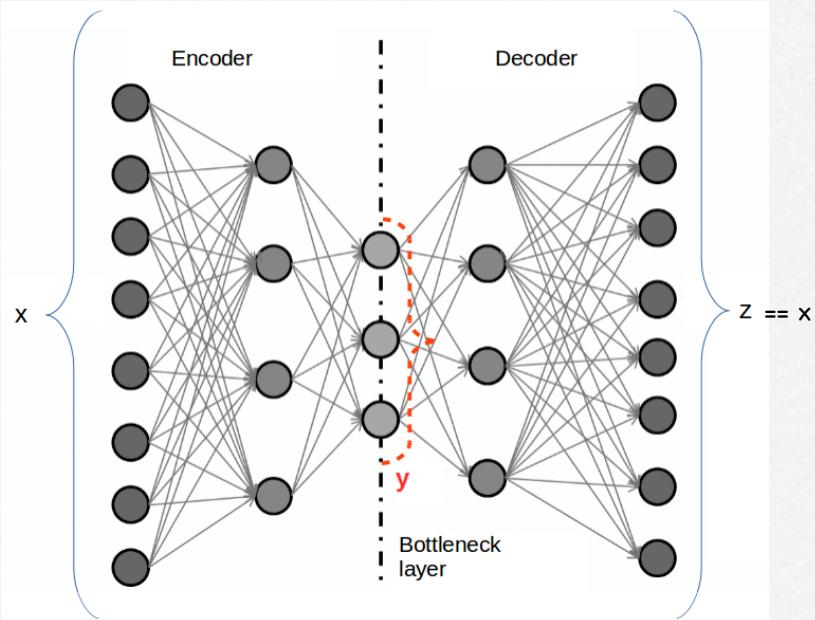
<https://www.asimovinstitute.org/neural-network-zoo/>

“Combinational” neural networks

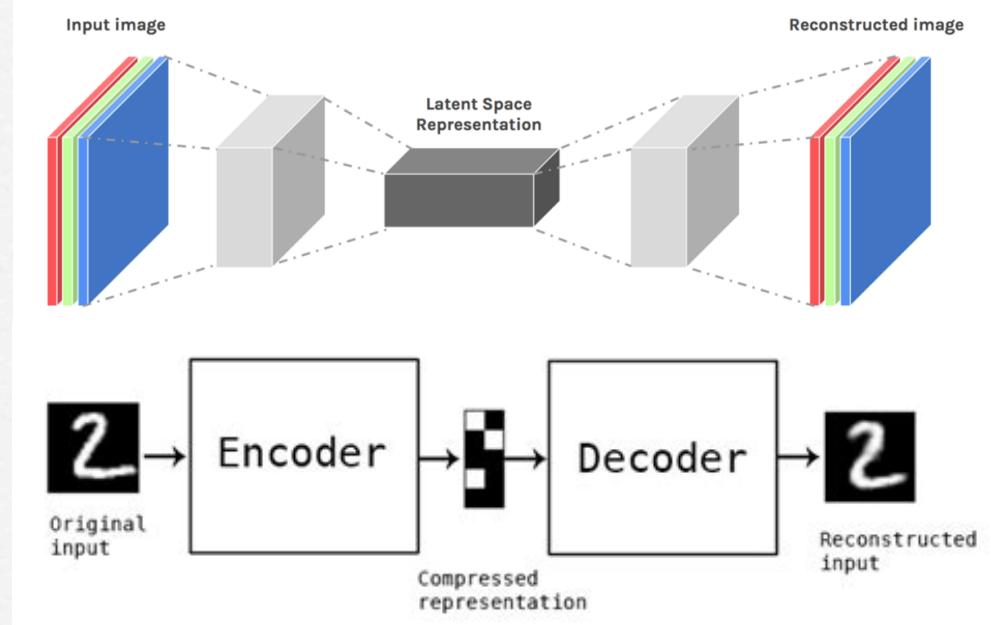
- Perceptron
- Multi-layer Perceptron (MLP)
- Radial Basis Function Network (RBF)*
- Convolutional Neural Networks (CNN)
- Deep Residual Networks (e.g., ResNet)



Auto-encoders



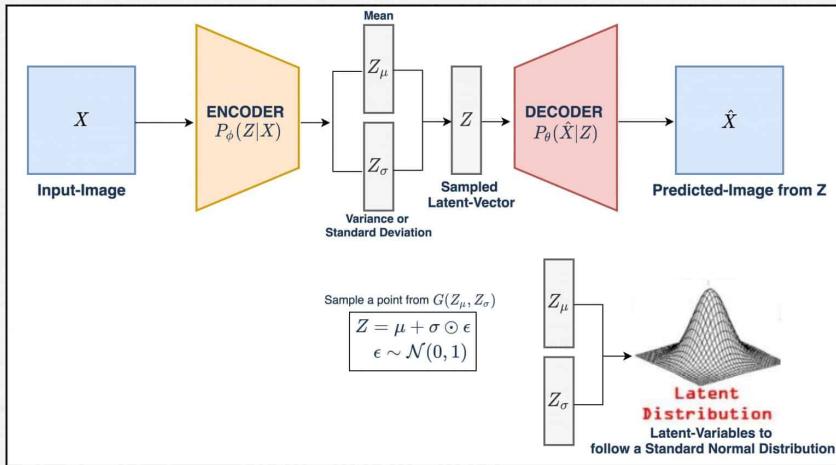
Fully-connected auto-encoder



Deep auto-encoder

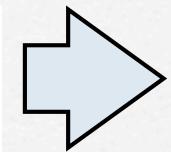
- An auto-encoder is trained to reproduce the input at the output from a reduced set of features (compressed information). It is used for denoising, compression, anomaly detection, characterization.

Variational Auto-Encoders (VAE)

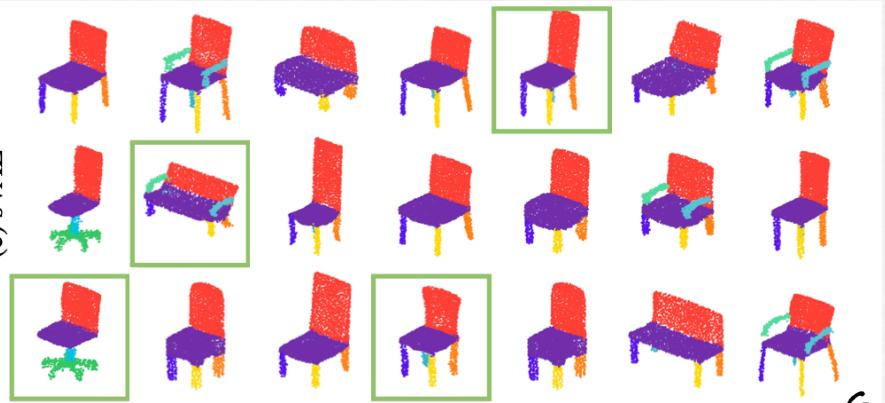


- We force the latent vectors to have a unit Gaussian distribution. Once trained, we can use the decoder part as a generator to create synthetic data, by adjusting the latent vectors:

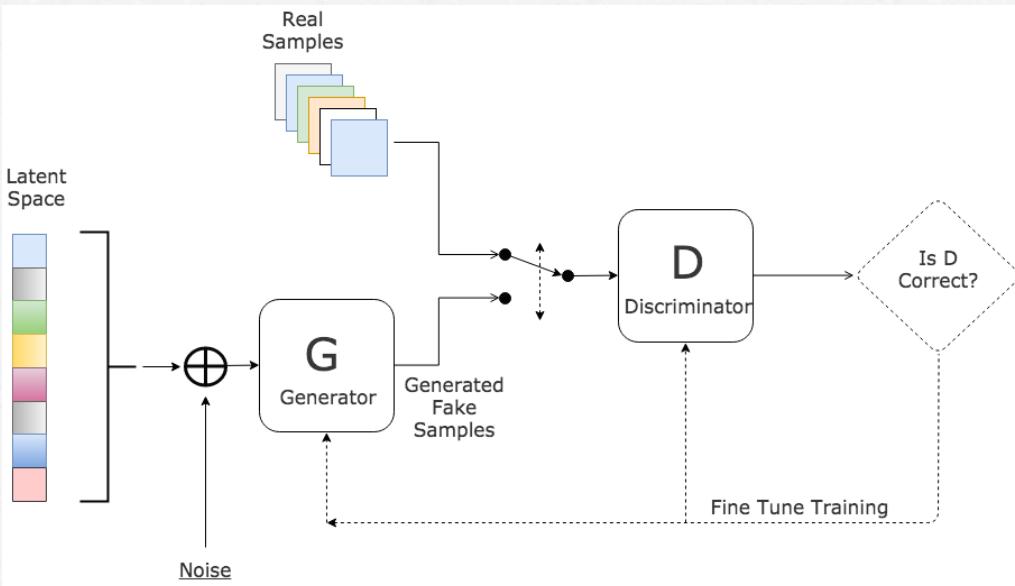
(a) Data



(c) sVAE



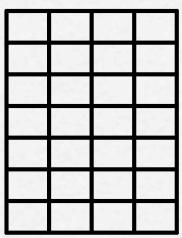
Generative Adversarial Network (GAN)



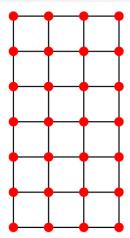
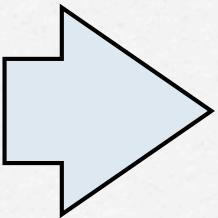
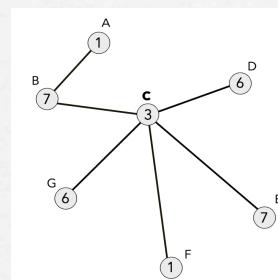
- We train two networks, G (decoder-type CNN) and D (encoder-type CNN) such that D gets better in classifying fake from real and G gets better in fooling D (e.g., in generating samples close to the real ones).
- After training, the outputs of G are synthetic data that closely resemble the real samples (e.g., faces of persons that do not exist).

Graph Neural Networks (1)

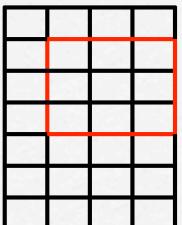
- Neural networks have been traditionally used to operate on fixed-size and/or regular-structured inputs (e.g., images). GNNs aim at elegantly process graph-structured data.



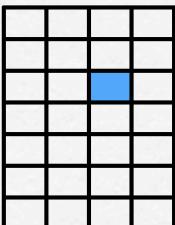
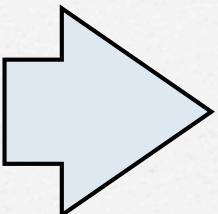
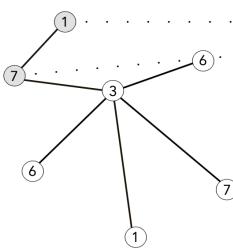
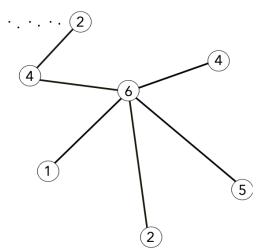
= =



- Localized convolution mimicking CNNs:



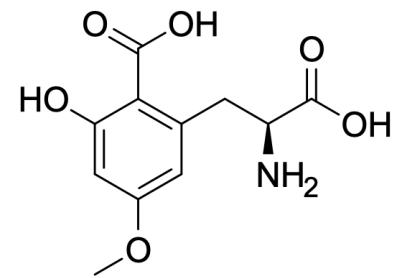
filter



filters are applied on interconnected nodes

Graph Neural Networks (2)

- Example application include:
- graph classification (toxic molecule or not, body posture, etc)
- node classification, node clustering
- temporal graphs, etc..



toxic molecule

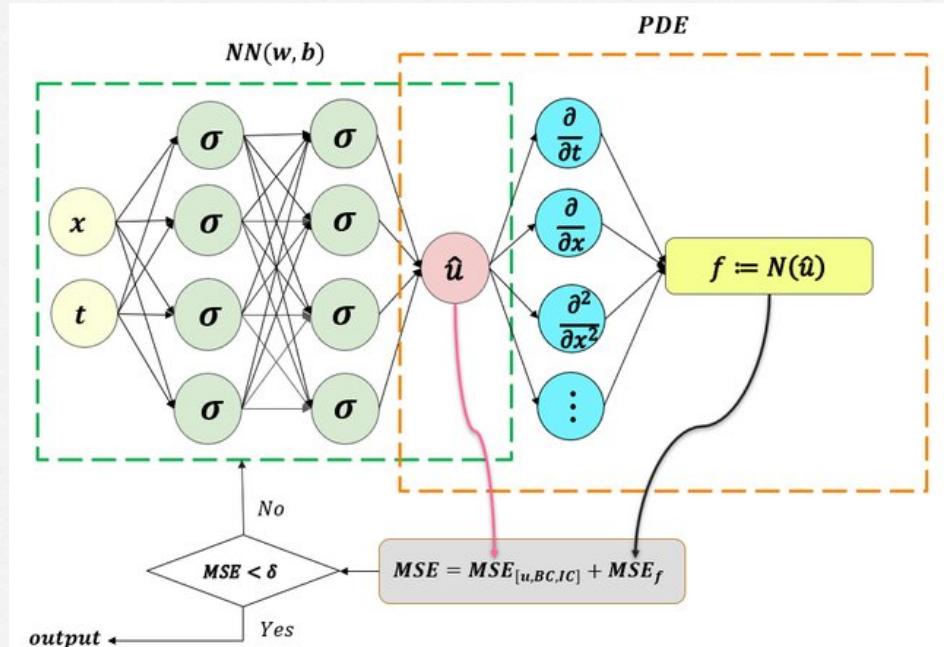
thoughtful

astonished

sad

Physics-Informed Neural Networks

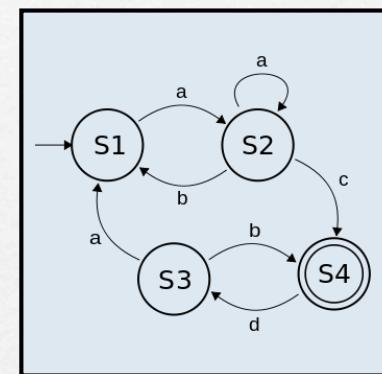
- The prior knowledge of general physical laws acts in the training of neural networks (NNs) as a regularization agent that limits the space of admissible solutions, increasing the correctness of the function approximation.



“Sequential” Neural Networks

□ **Taking care of sequences:** lots of information that we store in our brains is not random access, because they were learned as a sequence. Examples:

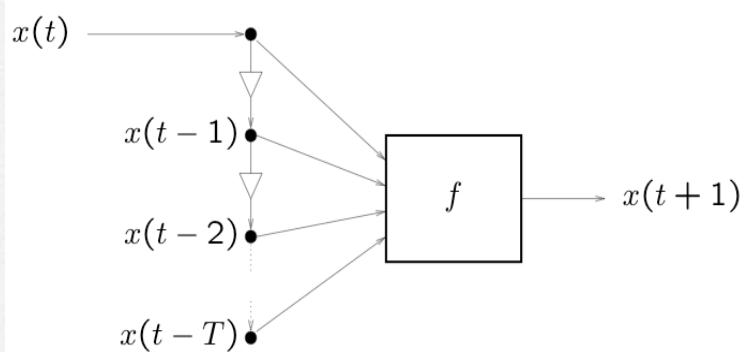
- Try to list the alphabet backwards
- Try to list the musical notes in an octave backwards
- Try to say your phone number backwards



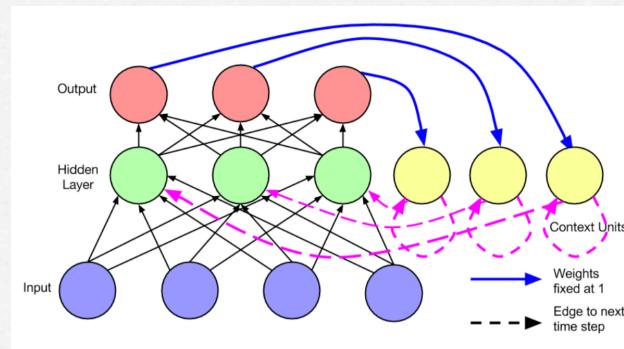
□ **Lots of data is of temporal nature** and generally does not change in an abrupt manner. Examples:

- ECG, temperature, stock values, etc. (time series)

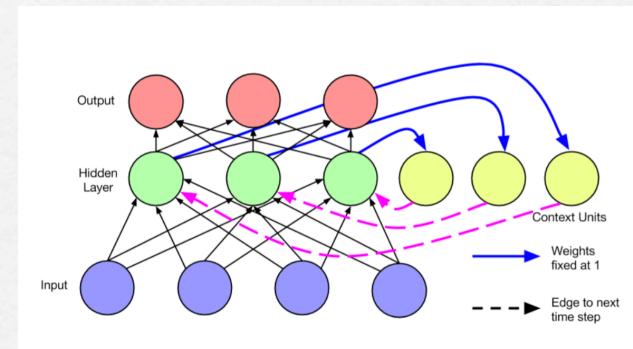
Discrete time recurrent neural architectures



Time-Delay Neural Nets



Jordan Networks (1986)

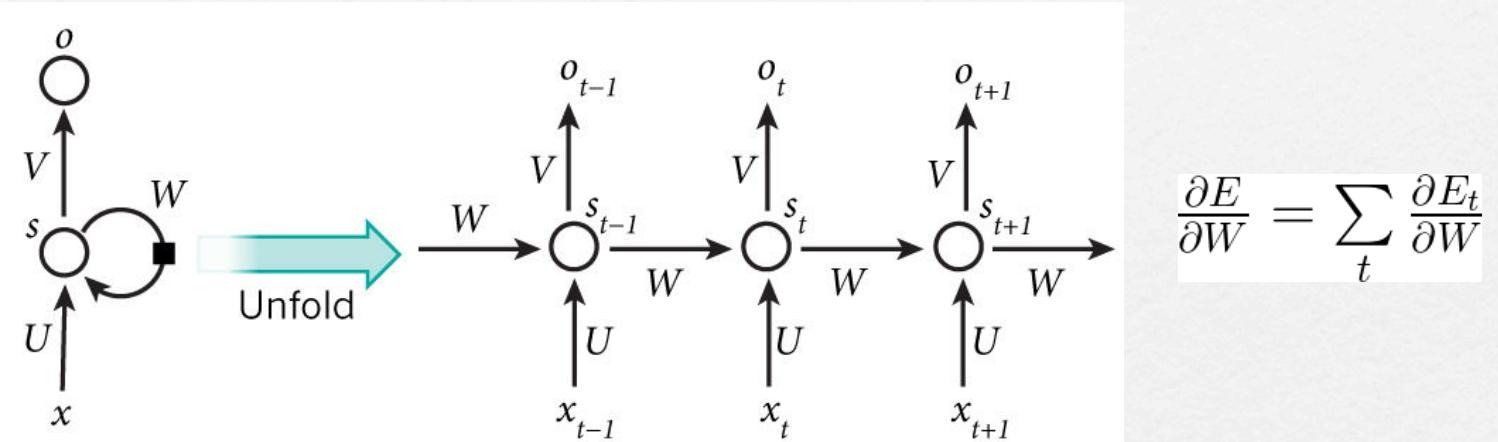


Elman Networks (1990)

from Lipton et al., "A Critical Review of Recurrent Neural Networks for Sequence Learning.", <http://arxiv.org/abs/1506.00019>
APE 2024

Recurrent Neural Networks

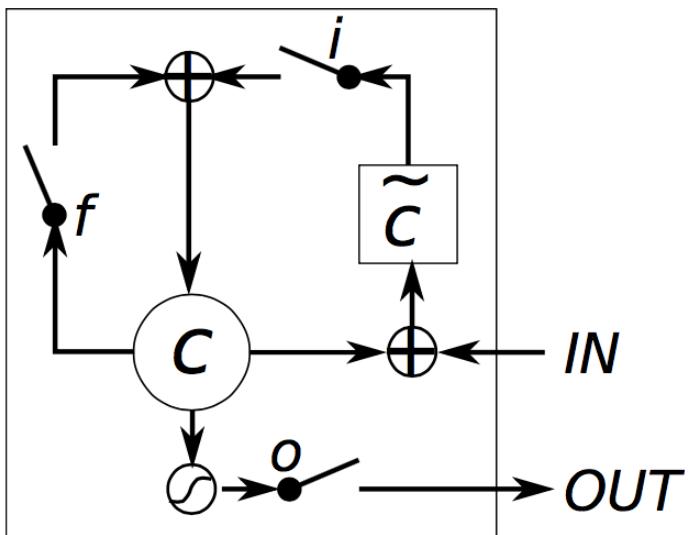
- The training is similar to that of a feed-forward network, but each epoch must run through the observations in sequential order.



- Supposing that the network has been unfolded to a depth of $k=3$, each training pattern consists of $[x(t-1), x(t), x(t+1) ; O(t+1)]$
- Given an error function $E(O_{t+1}, \hat{O}_{t+1})$, the objective is to find W and U by using gradient descent (Backprop Through Time) to minimize E .
- BPTT (Paul Werbos, 1988) suffers from vanishing gradients

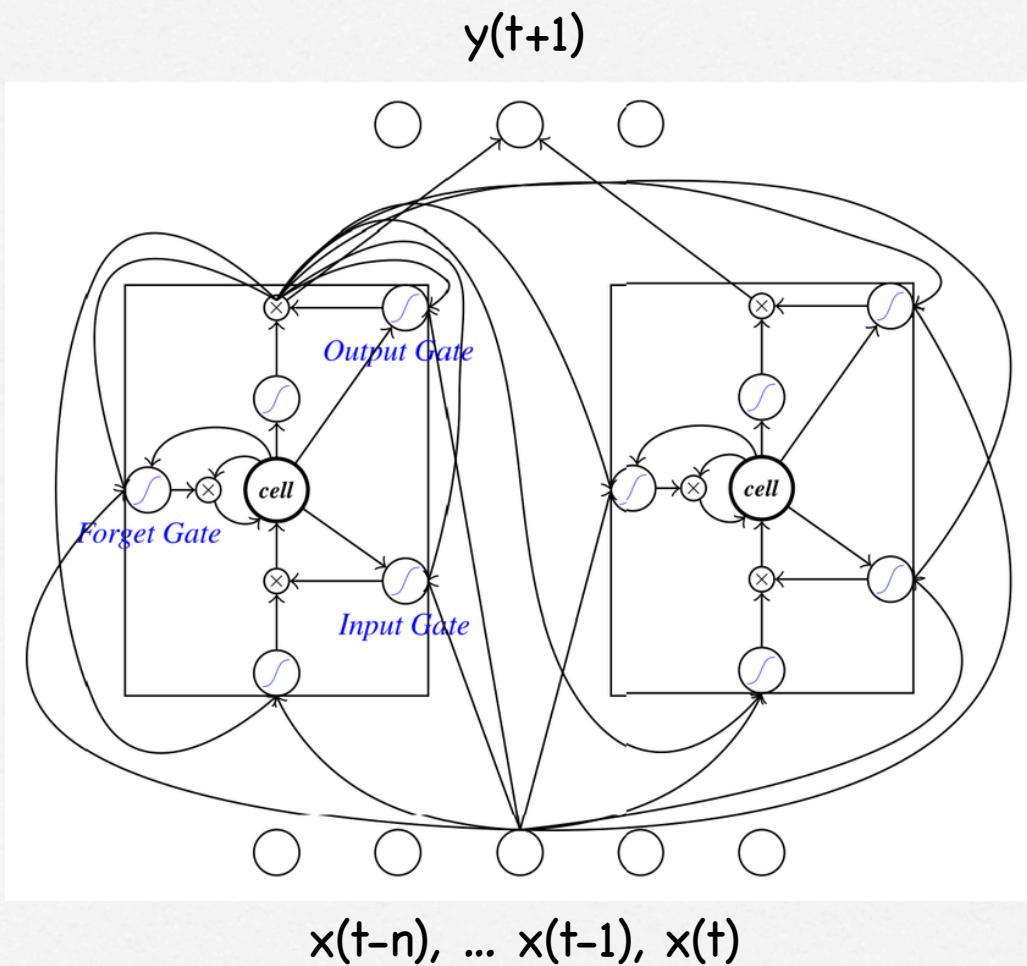
Long Short-Term Memory

- To avoid the vanishing gradients problem, Schmidhuber et al. proposed to gate all operations to store only what is useful for a delayed response (prediction).

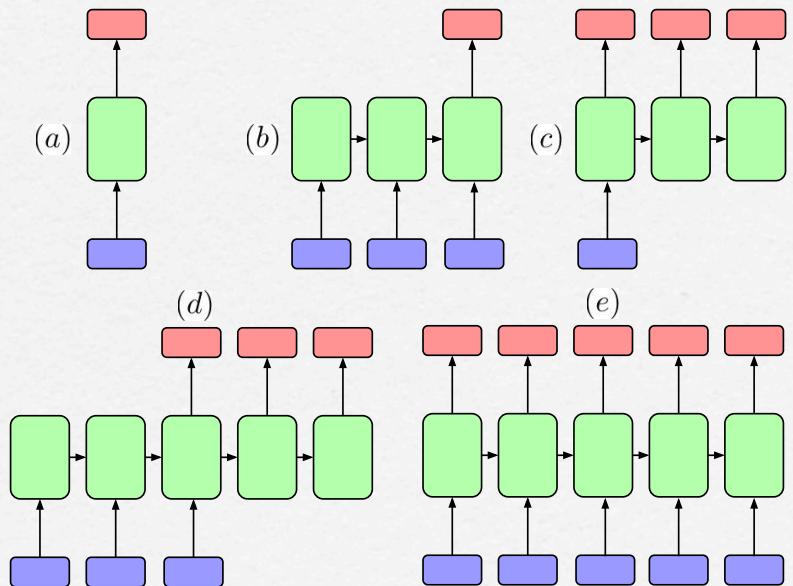


- A simplified model of a so-called “Long short-term memory (LSTM) unit” works like this:
- There are three gates (i, f, o) controlled by “Perceptrons” weighing the inputs and the recurrent outputs
- Given an input IN , we compute a new state c' that can:
 - be ignored ($i = 0$)
 - replace the previous state ($f=0$ and $i=1$)
 - be used to compute a new state $C + c'$ ($f=1$ and $i=1$)
- Given a state C , the network outputs OUT ($o=1$) or not ($o=0$)

Recurrent connectivity of LSTMs



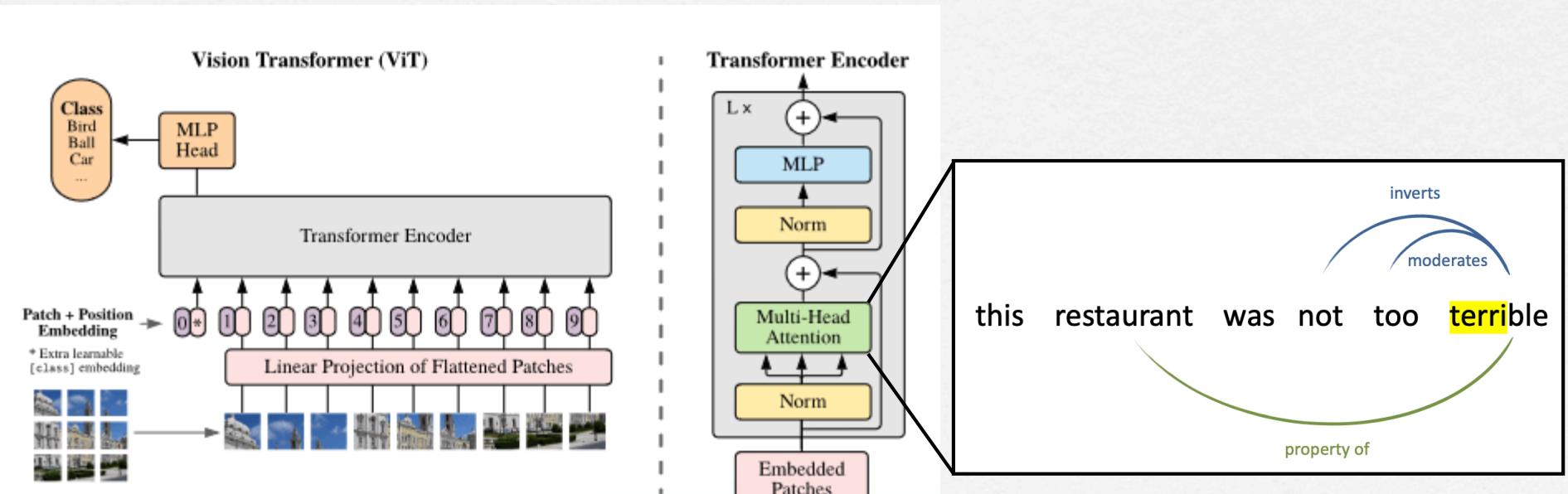
LSTM architectures & applications



- a) Feed-forward network (not a recurrent architecture)
- b) Text and video classification: a sequence is mapped to one fixed length vector
- c) Image captioning: the input image is a single non-sequential data point.
- d) Natural language translation, a sequence-to-sequence task (they might have varying and different sizes)
- e) Learn a generative model for text, predicting at each step the following character.

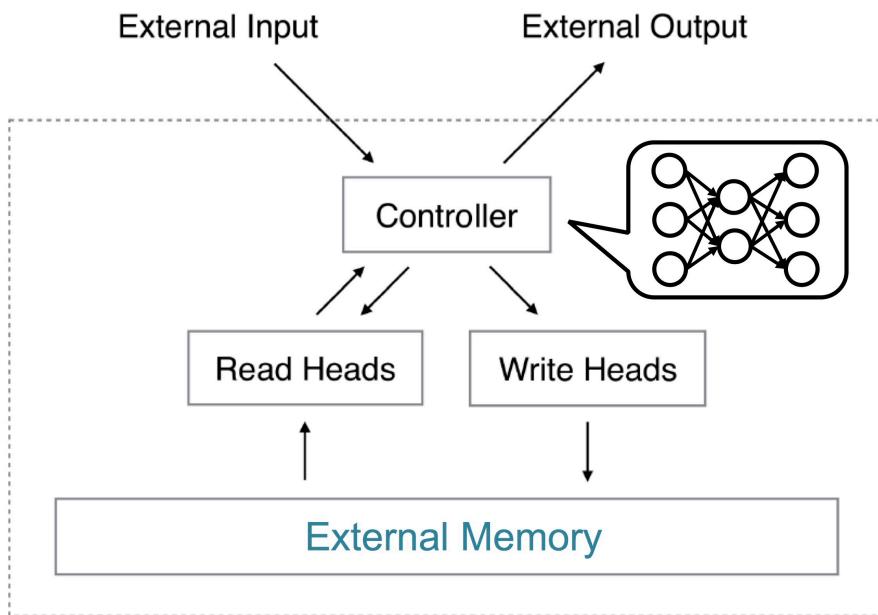
Transformers

- An architecture introduced in 2017 by the Google Brain team to deal with sequential data, like language. It processes all input data at once (e.g., not one word at a time). It is the building block of large language models like GPT.
- Vision transformers (ViT) split an image into multiple patches that are then processed like words of a text. The Transformer learns relationships between different portions of the images.

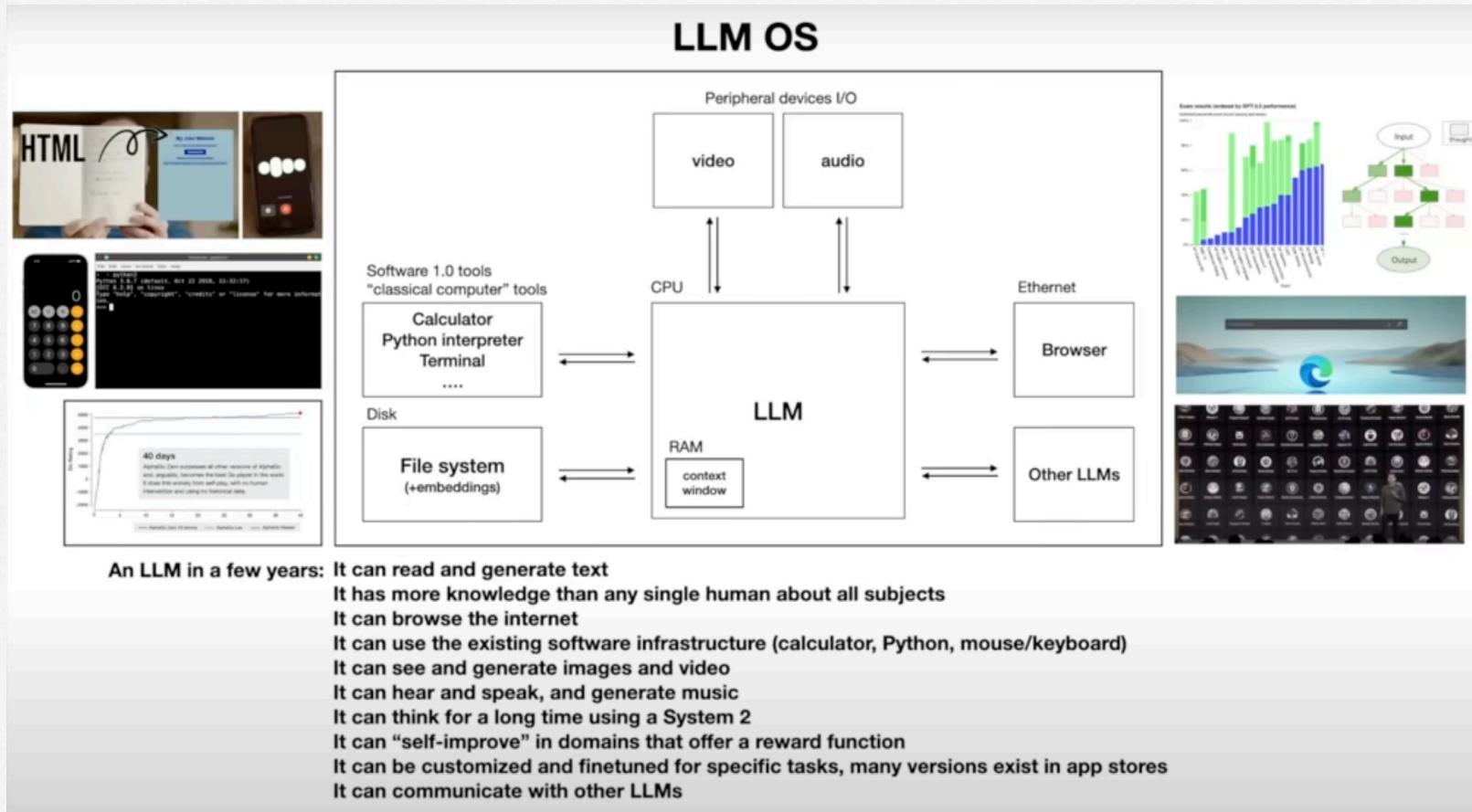


Neural Turing Machine

- Proposed by Alex Graves (DeepMind; previously worked with Schmidhuber and Hinton) in 2014.
- It is basically a neural controller coupled to external memory resources.
- The memory interactions are differentiable, thus learnable by gradient descent.
- So far, they have allowed the learning of simple algorithms (copying, sorting, associative recall).



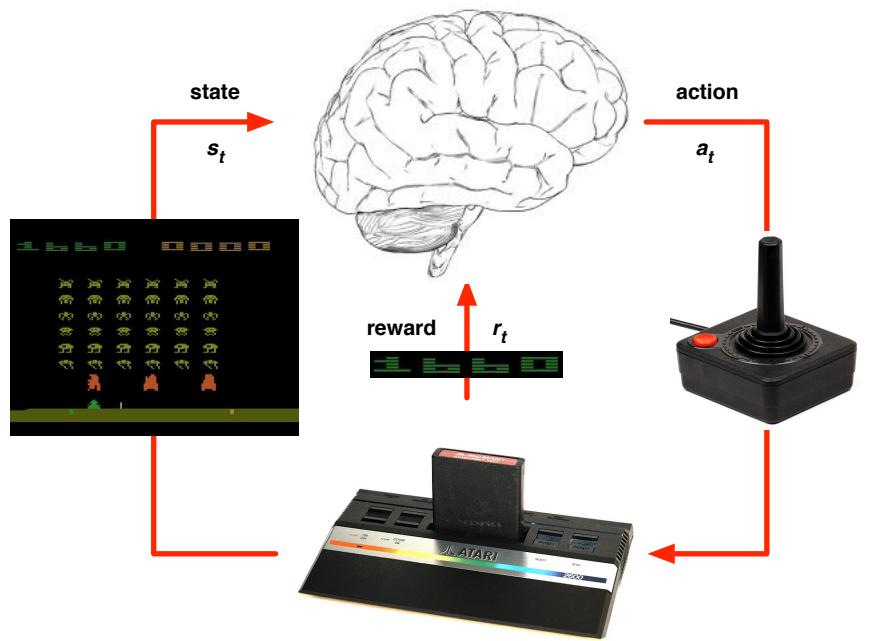
LLM-based Operating Systems



from Andrej Karpathy

Deep Q-Networks

- Q-learning is the basic **reinforcement learning** algorithm (e.g., learning by trial&error coupled to rewards). It learns a value function denoted by $Q(s,a)$ whose values indicate how good it is to take action a while being in state s .



- In 2015, researchers from DeepMind used CNNs to learn representations from Atari game scenes and approximate the $Q(s,a)$ value function that allows an agent to play the games.

Further courses at HEIG-VD

- Supervised learning (Bayesian, Decision trees, Ensemble models, Support Vector Machines)
- Unsupervised learning (clustering & dimensionality reduction)
- Simulation & Optimisation
- eXplainable AI**
- Traitemet Automatique des Langues (NLP)**
- Intelligence Artificielle pour les systèmes autonomes**
- Machine Intelligence (semi-supervised learning, RL, AI & creativity, collective intelligence, artificial evolution, artificial life)**
- Bioinformatique et biologie computationnelle**
- Méthodes d'apprentissage pour l'optimisation**
- Introduction à la vision par ordinateur**
- etc...**