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Objectives
Understand the limits of Convolutional Neural 
Networks and the problems arising from the way they 
are created and the way they work 


Understand the basic principles that can help us 
visualize the inner working of Convolutional Neural 
Networks


Use the visualization techniques to analyze a pre-
trained CNN and verify the relevance of the 
information it is using to solve an object recognition 
task
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CNN advantages (1)
ILSRVC challenge 2010-2017 —> automatic feature 
discovery better than “manual” feature extraction


Before that, the state-of-the-art solutions for object 
recognition were based on feature extractors like HOG 
(Histogram of Oriented Gradients) and SIFT (Scale 
invariant Feature Transform).
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Chihuahua or muffin ?

Astonishingly, a fine-tuned CNN (transfer learning) works 
very well on the chihuahua vs muffin challenge!
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Meaningfulness of solutions

The CNN is just a very powerful algorithm that 


computes automatic features from the input data


and finds correlations between input patterns to 
the computed features, and classes 


Are those features meaningful ?


Are those correlations relevant ?
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Is there a horse in the image ?

S Lapuschkin et al., 2019
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Performance guarantee 

A good performance on a benchmark dataset is not a 
guarantee of good performance later in real life


The truth is that we cannot “for sure” predict the 
behavior of a CNN-based solution on new inputs
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Is there a person here ? (2)
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Biases in the training datasets are then reflected in 
the applications using the models we created with 
those data


There is an urgent need for more inclusive systems 
(gender, sex, skin color, age, minority, etc)  but this 
requires collective more inclusive data
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CNN advantages (2)

Hierarchical feature extraction allows for spatial 
translation invariance and the recognition of objects 
appearing at different sizes
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Spatial translation invariance

from hackernoon.com

person: 0.88

person: 0.85
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“Brute force” correlations 

pepita = miniature pinscher ? (Satizabal, HEIG-VD 2016)

0.47 0.97 0.99

Output maximization by image occlusion

A CNN does not “understand” the data it is processing… it is just 
detecting and computing features to make a decision. A face with more 
eyes and appearing anywhere can be associated to the class “face” even 
more strongly than a normal face.
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Adversarial attacks (1)

Nguyen, Yosinski, Clune, 2014

Deep Neural Networks are Easily Fooled:

High Confidence Predictions for Unrecognizable Images

Anh Nguyen
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Cornell University
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University of Wyoming
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Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify ob-
jects in images with near-human-level performance, ques-
tions naturally arise as to what differences remain between
computer and human vision. A recent study revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects.
Our results shed light on interesting differences between hu-
man vision and current DNNs, and raise questions about the
generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [1, 13]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[15, 5, 27, 16]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

A recent study revealed a major difference between DNN

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

and human vision [26]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static
is a motorcycle). Specifically, we use evolutionary algo-
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K Eykholt et al, CVPR 2018

Physical-robust attack: a 
STOP signal is perceived as a 
speed limit sign (max 45 mph)

Since 2013, researchers started to find that 
certain high-performance CNNs were surprisingly 
easily fooled.

Then, they deliberately tried to find a way to 
systematically fool them (e.g., using ascent 
gradient or evolutionary algorithms)
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Adversarial attacks (2)

Goodfellow et al, ICLR 2015
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One pixel attack for fooling CNNs

Jiawei Sun, Danilo Vasconcellos and 
K. Sakourai from Kyushu University 
showed that +40% of the ImageNet 
validation dataset can be perturbed 
to at least one target class by 
modifying a single pixel !


Three CNNs were used for this 
study: AllConv, NiN and VGG.


arXiv:1710.08864v4 (22.2.18)

One pixel attack for fooling deep neural networks
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Kyushu University

Japan
jiawei.su@inf.kyushu-u.ac.jp

Danilo Vasconcellos Vargas*
Kyushu University

Japan
vargas@inf.kyushu-u.ac.jp

Kouichi Sakurai
Kyushu University

Japan
sakurai@csce.kyushu-u.ac.jp

Abstract

Recent research has revealed that the output of Deep
Neural Networks (DNN) can be easily altered by adding rel-
atively small perturbations to the input vector. In this paper,
we analyze an attack in an extremely limited scenario where
only one pixel can be modified. For that we propose a novel
method for generating one-pixel adversarial perturbations
based on differential evolution. It requires less adversar-
ial information and can fool more types of networks. The
results show that 68.36% of the natural images in CIFAR-
10 test dataset and 41.22% of the ImageNet (ILSVRC 2012)
validation images can be perturbed to at least one target
class by modifying just one pixel with 73.22% and 5.52%
confidence on average. Thus, the proposed attack explores
a different take on adversarial machine learning in an ex-
treme limited scenario, showing that current DNNs are also
vulnerable to such low dimension attacks.

1. Introduction
In the domain of image recognition, DNN-based ap-

proach has overcome traditional image processing tech-
niques, achieving even human-competitive results [25].
However, several studies have revealed that artificial pertur-
bations on natural images can easily make DNN misclassify
and accordingly proposed effective algorithms for generat-
ing such samples called “adversarial images” [18, 11, 24, 7].
A common idea for creating adversarial images is adding a
tiny amount of well-tuned additive perturbation, which is
expected to be imperceptible to human eyes, to a correctly
classified natural image. Such modification can cause the
classifier to label the modified image as a completely dif-
ferent class. Unfortunately, most of the previous attacks
did not consider extremely limited scenarios for adversarial
attacks, namely the modifications might be excessive (i.e.,
the the amount of modified pixels is fairly large) such that it
may be perceptible to human eyes (see Figure 3 for an ex-

*Both authors have equal contribution.

Figure 1. One-pixel attacks created with the proposed algorithm
that successfully fooled three types of DNNs trained on CIFAR-10
dataset: The All convolutional network(AllConv), Network in net-
work(NiN) and VGG. The original class labels are in black color
while the target class labels and the corresponding confidence are
in blue.

ample). Additionally, investigating adversarial images cre-
ated under extremely limited scenarios might give new in-
sights about the geometrical characteristics and overall be-
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Visualization tools

images that maximize the activation of each filter

Feature Map visualization


Activation maximization


Filter activation statistics

Occlusion analysis


Class Activation Maps


Deconvolution
16
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Feature Map visualization

input (28x28)

Outputs of the convolutional filters

9x[5x5] 9x[5x5]

maxpool

16x[3x3]

maxpool

28x28 14x14 7x7
17
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Activation Maximization
The output of the first convolutional layer is easy to interpret. Let’s 
simply visualize it as an image.


Subsequent convolutional filters operate over the outputs of previous  
filters (which indicate the presence or absence of some “templates”), 
making them hard to interpret.


Idea: what sort of input pattern maximizes the activation of a 
particular filter ?


Use ∂ Activation / ∂ input to modify a random input image and 
maximize the activation of a given output. Example:

28x28 
random image

18
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Filter Activation Statistics

Filter activation statistics (Satizabal, 2016)

The red pixels indicate that for them, the kernel 0 is the most frequent 
filter (for all same digits in the database) with the highest activation

19



APE 2024

Occlusion Analysis
(Zeiler & Fergus, 2013)

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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feature map projections
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of correct class 
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Figure 7. Three test examples where we systematically cover up different portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.

What is the most discriminative object or part of the image that lets the CNN decide 
what is the label of a given image ? 

Visualizing and Understanding Convolutional Networks
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results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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Figure 7. Three test examples where we systematically cover up different portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.
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Class Activation Maps (1)

A Global Average Pooling (GAP) layer computes the mean of the 
activations of the filters of a given layer.


We replace the fully-connected part by a GAP layer followed by 
a dense linear layer using a softmax output. We train this 
network and obtain weights w1 to wn.

from arXiv:1512.04150v1
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Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions.

bias of the softmax to 0 as it has little to no impact on the
classification performance.

By plugging Fk =
P

x,y fk(x, y) into the class score,
Sc, we obtain

Sc =
X

k

wc
k

X

x,y

fk(x, y)

=
X

x,y

X
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kfk(x, y). (1)

We define Mc as the class activation map for class c, where
each spatial element is given by

Mc(x, y) =
X

k

wc
kfk(x, y). (2)

Thus, Sc =
P

x,y Mc(x, y), and hence Mc(x, y) directly
indicates the importance of the activation at spatial grid
(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [33, 29], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions

Figure 3. The CAMs of four classes from ILSVRC [20]. The maps
highlight the discriminative image regions used for image classifi-
cation e.g., the head of the animal for briard and hen, the plates in
barbell, and the bell in bell cote.

for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Global average pooling (GAP) vs global max pool-

ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
work to identify the extent of the object as compared to
GMP which encourages it to identify just one discrimina-
tive part. This is because, when doing the average of a map,
the value can be maximized by finding all discriminative
parts of an object as all low activations reduce the output of

3
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The CAM for a given image is the weighted sum of the last-
layer’s filter activations. It is finally upsampled to match the 
input image size.


The result is a “heat-map” indicating what portion of the image 
the CNN is paying more attention.

from arXiv:1512.04150v1
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(x, y) leading to the classification of an image to class c.

Intuitively, based on prior works [33, 29], we expect each
unit to be activated by some visual pattern within its recep-
tive field. Thus fk is the map of the presence of this visual
pattern. The class activation map is simply a weighted lin-
ear sum of the presence of these visual patterns at different
spatial locations. By simply upsampling the class activa-
tion map to the size of the input image, we can identify the
image regions most relevant to the particular category.

In Fig. 3, we show some examples of the CAMs output
using the above approach. We can see that the discrimi-
native regions of the images for various classes are high-
lighted. In Fig. 4 we highlight the differences in the CAMs
for a single image when using different classes c to gener-
ate the maps. We observe that the discriminative regions

Figure 3. The CAMs of four classes from ILSVRC [20]. The maps
highlight the discriminative image regions used for image classifi-
cation e.g., the head of the animal for briard and hen, the plates in
barbell, and the bell in bell cote.

for different categories are different even for a given im-
age. This suggests that our approach works as expected.
We demonstrate this quantitatively in the sections ahead.

Global average pooling (GAP) vs global max pool-

ing (GMP): Given the prior work [16] on using GMP for
weakly supervised object localization, we believe it is im-
portant to highlight the intuitive difference between GAP
and GMP. We believe that GAP loss encourages the net-
work to identify the extent of the object as compared to
GMP which encourages it to identify just one discrimina-
tive part. This is because, when doing the average of a map,
the value can be maximized by finding all discriminative
parts of an object as all low activations reduce the output of

3

Class Activation Maps (2)
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Example: traffic density estimation
traffic density

Examples of low, medium 
and high traffic

presence of many vehicles = high traffic / absence of vehicles = low traffic

from Sabbani, Perez-Uribe, Bouttane, El Moudni (2018) 23
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Microscope OpenAI

https://microscope.openai.com/models 24
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Google’s What-If tool
interactive tool to 

analyze models/data

(e.g., CelebA)

human 
understandable 

features

25
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IBM’s AI fairness tool

Fairness analysis for a given 
dataset (e.g., US census)

Idea: can we predict gender, sex or skin color from the input data ?
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Biases of ImageNet-trained CNNs

arXiv:1811.12231v3 [ICLR 2019]
 27
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Shape vs texture features

Published as a conference paper at ICLR 2019

Figure 3: Visualisation of Stylized-ImageNet (SIN), created by applying AdaIN style transfer to
ImageNet images. Left: randomly selected ImageNet image of class ring-tailed lemur.
Right: ten examples of images with content/shape of left image and style/texture from different
paintings. After applying AdaIN style transfer, local texture cues are no longer highly predictive
of the target class, while the global shape tends to be retained. Note that within SIN, every source
image is stylized only once.

Greyscale Images from Original data set converted to greyscale using
skimage.color.rgb2gray. For CNNs, greyscale images were stacked
along the colour channel.

Silhouette Images from Original data set converted to silhouette images showing an entirely
black object on a white background (see Appendix A.6 for procedure).

Edges Images from Original data set converted to an edge-based representation using
Canny edge extractor implemented in MATLAB.

Texture 48 natural colour images of textures (3 per category). Typically the textures consist
of full-width patches of an animal (e.g. skin or fur) or, in particular for man-made
objects, of images with many repetitions of the same objects (e.g. many bottles next
to each other, see Figure 7 in the Appendix).

It is important to note that we only selected object and texture images that were correctly classified
by all four networks. This was made to ensure that our results in the sixth experiment on cue
conflicts, which is most decisive in terms of the shape vs texture hypothesis, are fully interpretable.
In the cue conflict experiment we present images with contradictory features (see Figure 1) but still
ask the participant to assign a single class. Note that the instructions to human observers were
entirely neutral w.r.t. shape or texture (“click on the object category that you see in the presented
image; guess if unsure. There is no right or wrong answer, we are interested in your subjective
impression”).

Cue conflict Images generated using iterative style transfer (Gatys et al., 2016) between an image
of the Texture data set (as style) and an image from the Original data set (as content).
We generated a total of 1280 cue conflict images (80 per category), which allows
for presentation to human observers within a single experimental session.

We define “silhouette” as the bounding contour of an object in 2D (i.e., the outline of object segmen-
tation). When mentioning “object shape”, we use a definition that is broader than just the silhouette
of an object: we refer to the set of contours that describe the 3D form of an object, i.e. including
those contours that are not part of the silhouette. Following Gatys et al. (2017), we define “texture”
as an image (region) with spatially stationary statistics. Note that on a very local level, textures
(according to this definition) can have non-stationary elements (such as a local shape): e.g. a single
bottle clearly has non-stationary statistics, but many bottles next to each other are perceived as a
texture: “things” become “stuff” (Gatys et al., 2017, p. 178). For an example of a “bottle texture”
see Figure 7.

4
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Figure 3: Visualisation of Stylized-ImageNet (SIN), created by applying AdaIN style transfer to
ImageNet images. Left: randomly selected ImageNet image of class ring-tailed lemur.
Right: ten examples of images with content/shape of left image and style/texture from different
paintings. After applying AdaIN style transfer, local texture cues are no longer highly predictive
of the target class, while the global shape tends to be retained. Note that within SIN, every source
image is stylized only once.

Greyscale Images from Original data set converted to greyscale using
skimage.color.rgb2gray. For CNNs, greyscale images were stacked
along the colour channel.

Silhouette Images from Original data set converted to silhouette images showing an entirely
black object on a white background (see Appendix A.6 for procedure).

Edges Images from Original data set converted to an edge-based representation using
Canny edge extractor implemented in MATLAB.

Texture 48 natural colour images of textures (3 per category). Typically the textures consist
of full-width patches of an animal (e.g. skin or fur) or, in particular for man-made
objects, of images with many repetitions of the same objects (e.g. many bottles next
to each other, see Figure 7 in the Appendix).

It is important to note that we only selected object and texture images that were correctly classified
by all four networks. This was made to ensure that our results in the sixth experiment on cue
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of the Texture data set (as style) and an image from the Original data set (as content).
We generated a total of 1280 cue conflict images (80 per category), which allows
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The SIN dataset is a much harder task than ImageNet (IN)


A model trained on SIN generalises well on IN, but a 
model trained on IN does not generalize well on SIN.


Current CNNs are biased towards learning texture-based 
features.
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XAI: eXplainable AI

Explainable AI (XAI) refers to methods and 
techniques in the application of artificial 
intelligence technology (AI) such that human 
experts can understand the results of the 
solution.


If I do not understand the models, how do I 
trust model predictions ?
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