— — — — m— T = — e S SE— — _— o= — T— S— La— e T S - . —

9. TRANSFER LEARNING,
EMBEDDINGS AND META-
LEARNING

Stephan Robert-Nicoud
HEIG-VD/HES-SO

Credit: Andres Perez-Urlbe

@ APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

Objectives

Understand how can we profit from pre-trained

deep neural network models to develop new
applications

Apply the transfer learning methodology using
your own data

Understand the concept of vector embeddings

Understand the concept of meta-learning and how
to learn from few data

APE 2024

1 Turns the visual world into an
" audible experience

scenes & photo
description

read texts object recognition

APE 2024

a person holding a tomato Probably a hand holding a vegetable ahand holding a green apple Probably a hand holding a white ball a hand holding a white egg

Save Photo Explore Photo Save Photo Explore Photo Save Photo Explore Photo Save Photo Share Explore Photo Save Photo Explore Photo

APE 2024

Teachable machine

= Teachable Machine

Class 1

Add Image Samples:

C &

Webcam Upload
Training

-

Preview T Export Model

Train Model

Class 2 You must train a model on the left
before you can preview it here.

Add Image Samples:

C &

https://teachablemachine.withgoogle.com/

APE 2024

https://teachablemachine.withgoogle.com/

Three amazing observations

The teachable machine can be trained with small data!
O there is no need for Big Data

The teachable machine can be trained on a standard
machine

O No GPUs are needed and the training does not
take too long

The teachable machine can work on a browser and
may work on an embedded device!

APE 2024

L 5[——1) ervor or loss function

N

EXAmp les
(X, T)

CNN model

target or destred output

The more weights to learn the more data is necessary to avoid overfitting

EE-
I G APE 2024

CNN learned filters

O Many CNNs learn Gabor-like filters or color blob detection
in the first layers and many feature detectors obtained by
training a CNN with a large database appear to be useful
for other image processing fasks.

APE 2024

Transfer learning

Transfer Learning Overview

The idea is to use the _
first layers of a CNN that InputA i ﬂ Task A

was previously trained

(i.e., with lots of data) \
and expect to be able to ., ...[
fine-tune only the (

subsequent ones in order
to use it for a new task. InputB

frozen weights /

(copied from the pre-

tratned model)
APE 2024 https://arxiv.org/abs/1411.1792

Quadrants of transfer learning

Dataset
Size

Dataset
Size

3 A

Quadrant 1 Quadrant 2 Train the entire Train some layers and

model leave others frozen ‘fVDZBI/\z
Large dataset, Large dataset

but different from and similar to the l
the pre-trained pre-trained v
model’s dataset model’s dataset ﬁ B

Dataset .~ Dataset
Similarity) ~ Similarity
Quadrant 3 Quadrant 4 Train some layers and
leave others frozen

Freeze the

Small dataset and
different from the
pre-trained
model’s dataset

Small dataset and convolutional base

similar to the pre-
trained model’s
dataset

from Fel Fel UL and https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2z9z3f124751

APE 2024

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

Pre-trained CNNs

Object recognition
O VGGs, ResNets, Inceptions, DenseNets
O MobileNet (light model for embedded systems)
Face recognition
O VGG-Face
Object localization
O Mask R-CNN, YOLO, SSD
Semantic segmentation
O U-NET
Pose estimation
O PoseNet, OpenPose
X-Ray diagnosis
O CheXNet

APE 2024

ome available models

Available models

Time (ms) per Time (ms) per
Parameters | Depth | inference step inference step
(CPU) (GPU)

Top-1 Top-5

Model Accuracy |Accuracy

Xception 79.0% 94.5% 109.4

VGG16 71.3% 90.1% 69.5 EfficientNetBO

VGG19 71.3% 90.0% EfficientNetB1

EfficientNetB2
ResNet50 74.9% 92.1% icientNet

EfficientNetB
ResNet50V2 76.0% | 93.0% icientNetB3

EfficientNetB4
ResNet101 76.4% 92.8%

EfficientNetB5
ResNet101V2 77.2% 93.8% icientNe

EfficientNetB6
ResNet152 76.6% 93.1%

EfficientNetB7
ResNet152V2 78.0% 94.2%

EfficientNetV2B0
InceptionV3 77.9% 93.7%

EfficientNetV2B1

InceptionResNetV2 80.3% 95.3%

EfficientNetV2B2
MobileNet 70.4% 89.5%

EfficientNetV2B3
MobileNetV2 71.3% 90.1%

EfficientNetV2S

DenseNet121 75.0% 92.3%

EfficientNetV2M
DenseNet169 76.2% 93.2%

EfficientNetV2L

DenseNet201 77.3% 93.6%

NASNetMobile 74.4% 91.9%

NASNetLarge 82.5% 96.0%

APE 2024 from https://keras.io/applications/

Using a pre-trained CNN for
object recognition with Keras

Lets simply read the weights of a pre-trained model (e.g., Resnet-50 trained with
the ImageNet database) and use it to recognize the object in a given image:

from tensorflow.keras.applications.resnet50 import ResNet5@

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights="imagenet')

img_path '/ILSVRC2012_val_00005019.JPEG'

img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)

X = np.expand_dims(x, axis=0)

X = preprocess_input(x)

preds = model.predict(x)
decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
('Predicted:', decode_predictions(preds, top=3)[0])
' [('n@2109961', 'Eskimo_dog', 0.48957556), ('n@2110185', 'Siberian_husky', 0.35920256), ('n02110063"',
'malamute', 0.15049036)]

TG APE 2024 from https://keras.io/applications/

Transfer learning using MobileNet

l ma g € N Net
=, - - Fi f'\ne‘tun‘\ng

rﬁf Eg@f-i% coimrs > .

i)

W”
S
ﬂn

1.2M images MobileNet Customized

(pre-trained
model by
Google)

Increasing
number of
available models

Example: Tensorflow for Poets

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
APE 2024

MobileNets

MobileNet is a class of efficient models for mobile and
embedded vision applications.

Introduced by a team from Google in 2017.

They reach comparable performances to larger
architectures but using fewer parameters.

Model ImageNet Million Million

Accuracy Mult-Adds Parameters
1.0 MobileNet-224 70.6% 569 4.2
GoogleNet 69.8% 1550 6.8
VGG 16 71.5% 15300 138

APE 2024

Convolutions in MobileNets (1)

Image with 3 Color Channels - Input Tensor

MobileNets use depth-wise separable E

. . . . / l \
convolutions to build light weight deep
neural networks (e.g., less parameters).

In general, when we processes a color = = HA
image, convolutions are applied on all e
channels and the result is a single J J
“image” (feature map) mixing the JJ

channels.

Obtain the Convolved Feature Map for each Color Channel of the Input Image

|
In depth-wise convolutions the channels \L i

are ﬁrs.l. kep.l. separa.'.e (S.I.eps 1_3). A 1)(1 Fina?éu'?fm%ﬁ‘éﬂ?if"&ef??;fﬁféi&ﬁif|meage
layer of convolutions is finally used to ?

combine the multiple channels (step 4). O
H E S Combining the three channels to form n number of channels

In This example - three channel: mbined to form put tensor of 1 channel
I G from https://arxiv.org/paf/1704.04861v1 pof APE 2024 from townrdsdatascience.com

http://townrdsdatascience.com

Convolutions in MobileNets (2)

M

Dk O Example: suppose a convolution
—N— layer based on N 3x3 filters
(&) Standand Convalution Filters (Dk=3) and processing an RGB
image (M=3) of size HxW

O The normal convolutions require
—M— HxWx(DkxDk)xMxN mult-adds or
(b) Depthwise Convolutional Filters H XW X 27 X N

O Depthwise convolutions require
HxWx(DkxDk)xM + HxWxMxN
mult-adds or HXWx27 +HxWx3xN

vD (c) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
H E text of Depthwise Separable Convolution

I G from https://arxiv.org/paf/1704.04861v1 pof APE 2024

Typical transfer learning
process

Identify the pre-trained model you would like to use
Load the model and its weights

Modify the last layers (drop original output layer and
replace it by dense layers and an output that matches
the number of classes of the new task)

Freeze the first layers and set the last one to
“trainable”.

Re-compile the new model, train and evaluate.

APE 2024

Transfer learning using Keras (1)

The following example defines a new model based on the MobileNet architecture
taking all but the last layer. It computes the average of the features computed
with the convolutional layers (e.g., using a layer GlobalAveragePooling2D), it adds
a Dense layer (1024 neurons) and defines a new input for a 3 classes problem
using a softmax activation function.

from tensorflow.keras.applications.mobilenet import MobileNet
from tensorflow.keras.applications.mobilenet import preprocess_ input, decode predictions
from keras.layers import Dense,GlobalAveragePooling2D

base model=MobileNet (weights='imagenet',6include top=False) #imports the mobilenet model and discards
the last 1000 neuron layer.

x=base model.output

x=GlobalAveragePooling2D() (x)

x=Dense (1024 ,activation="'relu')(x) #we add dense layers so that the model can learn more complex
functions and classify for better results.

predictions=Dense(3,activation='softmax"')(x) #final layer with softmax activation

new model=Model (inputs=base model.input,outputs=predictions)

from https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299

APE 2024

Transfer learning using Keras (2)

The following code prints the layers composing the new model defined in the
previous slide. The second part of the code sets the first 87 layers to “non-
trainable” (we also say that we freeze that part of the model) and sets the final
two Dense layers to trainable. Finale we compile the new model and train it with
the new data.

for layer

for layer

Compile

for i,layer in enumerate(new_model.layers):
print (i,

Freeze the first 87 layers
layer.

layer.

new_model.

Fine-tune the new model
new_model.

layer.name)

in new model.layers[:87]:
trainable=False
in new model.layers[87:]:
trainable=True

the new model
compile(optimizer=‘Adam’,loss=‘categorical crossentropy',metrics=['accuracy'])

fit(new _train data, epochs=epochs, validation data=validation new data)

from https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7{f299

APE 2024

Vector Embeddings (1)

O One of the most fascinating concepts in ML: any object
(image, text document, sound, etc) can be reduced to a
vector of numerical values, which we can consider to be
features of those objects.

Object 1

Object 2 Embedding Model

Object 3
\ 0.4[0209]

Set of Objects Objects as Vectors

For example, the output of the convolutional part of a
CNN computes a vector that “characterizes” the input
image. That output can be used as a vector
embedding.

APE 2024 https://www . pinecone.io/Learn/vector-embeddings/

Vector Embeddings (2)

O Something special about vectors that makes them so
useful is that such a representation makes it possible
to translate semantic similarity as perceived by
humans to proximity in a vector space.

We expect that similar images produce similar
embeddings or feature vectors and that different
objects do produce different vectors.

APE 2024

Using a pre-trained CNN for
object characterization with Keras

This example uses a pre-trained VGG-16 model (using the ImageNet database) to

compute a vector of features from an image.

tensorflow.keras.applications.vggl6 VGG16

tensorflow.keras.preprocessing image

tensorflow.keras.applications.vggl6 preprocess_input
numpy np

model = VGG16(weights="'imagenet', include_top=False)

img_path ‘/ILSVRC2012_val_00005019.JPEG'

img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)

X = np.expand_dims(x, axis=0)

X = preprocess_input(x)

features = model.predict(x)
embedding = GlobalAveragePooling2D() (features)

Input Conv Conv Ma C

image || axaxea| Net Net [] P2« Pool [Taxax1zs'| Net [[/axaxtzs . ex 55 . feat'/(—res LS a \/ector Of

224x224x3 224x224x64 224x224x64 112x112x64 112x112x128

: G 512 values
e R e i

ST |55 '::tzsl/ e lse??zsl/ 2 Lsxpzosmzss ! [
- : ; embedding ts a vector
i 3x3x51273x3x512 szz W'/ ’ I = Df 12 \/a LM—BS

[axaxst2
2 4xdx512
TXTx512 X X512 S:2 X!

APE 2024 from https://keras.io/applications/

Embeddings for transfer learning

O An alternative way of performing transfer learning
consists on using a pre-trained model fo compute vector
embeddings from the input data and using those vectors
as inputs to a new model (which can be any sort of ML
model, e.g., K-NN) that is trained using the new data.

classifier trained
with new data

(S1) 4 feature ma ps

(Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature ml

£ i T
oos

ion layer | sub-sampling layer

Few-shot learning

We refer to few-shot learning when

our training set contains very few a2

examples. "
m S

One way to deal with such a problem is &
by using meta-learning, which aims to =
improve learning across different tasks Py

or datasets instead of specializing on a e

single one. E} |
The idea goes like this: train a model
to solve different tasks and expect it

to be almost ready to solve a new one.

APE 2024

Meta learning

O The idea is to train a model for a certain number of
epochs on a variety of learning tasks (71, 72,...), such that

at the end, it can solve a new learning task using only a
small number of training samples.

- O A simple algorithm
R that implements this
approach is called
REPTILE and was
developed by OpenAl.

NS %
____________________ -

figure from Satizabal and Perez-Uribe (2021)
APE 2024 http://doi.org/10.1007/978-3-030-85030-2_42

Few-shot learning DEMO using REPTILE

Low-Shot Learning Demo - Mozilla Firefox

Low-Shot Learning Demo X | +

< ¢ & © | & theia:5000 n o ®

Undo (point) Clear polygons

Save labels and areas

Train from REPTILE Train from scratch

Press Left Click to draw a point.

CTRL+Click or Right Click to close the polygon.

Developed at HEIG-VD in collaboration with Picterra S.A.; funded by the Swiss Space Center

APE 2024

