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Objectives

Understand how can we profit from pre-trained 
deep neural network models to develop new 
applications


Apply the transfer learning methodology using 
your own data


Understand the concept of vector embeddings


Understand the concept of meta-learning and how 
to learn from few data
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Microsoft’s Seeing AI app

Turns the visual world into an 
audible experience

currency bills scenes & photo 
description read texts object recognition
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Seeing AI object recognition
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https://teachablemachine.withgoogle.com/

Teachable machine

https://teachablemachine.withgoogle.com/
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Three amazing observations 

The teachable machine can be trained with small data!


there is no need for Big Data


The teachable machine can be trained on a standard 
machine


No GPUs are needed and the training does not 
take too long


The teachable machine can work on a browser and 
may work on an embedded device!
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Neural Networks’ data requirement
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The more weights to learn the more data is necessary to avoid overfitting
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CNN learned filters
Many CNNs learn Gabor-like filters or color blob detection 
in the first layers and many feature detectors obtained by 
training a CNN with a large database appear to be useful 
for other image processing tasks.
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Transfer learning

https://arxiv.org/abs/1411.1792

• The idea is to use the 
first layers of a CNN that 
was previously trained 
(i.e., with lots of data) 
and expect to be able to 
fine-tune only the 
subsequent ones in order 
to use it for a new task.

frozen weights 
(copied from the pre-

trained model)
adapted weights
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Quadrants of transfer learning

from Fei Fei Li and https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

frozen

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
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Pre-trained CNNs

Object recognition

VGGs, ResNets, Inceptions, DenseNets

MobileNet (light model for embedded systems)


Face recognition

VGG-Face


Object localization

Mask R-CNN, YOLO, SSD


Semantic segmentation

U-NET 


Pose estimation

PoseNet, OpenPose


X-Ray diagnosis

CheXNet
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Some available models 

from https://keras.io/applications/
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Using a pre-trained CNN for 
object recognition with Keras

from https://keras.io/applications/

from tensorflow.keras.applications.resnet50 import ResNet50 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions 
import numpy as np 

model = ResNet50(weights='imagenet') 

img_path = '/ILSVRC2012_val_00005019.JPEG' 
img = image.load_img(img_path, target_size=(224, 224)) 
x = image.img_to_array(img) 
x = np.expand_dims(x, axis=0) 
x = preprocess_input(x) 

preds = model.predict(x) 
# decode the results into a list of tuples (class, description, probability) 
# (one such list for each sample in the batch) 
print('Predicted:', decode_predictions(preds, top=3)[0]) 
#Predicted: [('n02109961', 'Eskimo_dog', 0.48957556), ('n02110185', 'Siberian_husky', 0.35920256), ('n02110063', 
'malamute', 0.15049036)]

Let’s simply read the weights of a pre-trained model (e.g., Resnet-50 trained with 
the ImageNet database) and use it to recognize the object in a given image:
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Transfer learning using MobileNet

1.2M images MobileNet
(pre-trained 
model by 
Google)

+ MyImages

Customized
system

Increasing
number of 
available models

fine-tuning

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
Example: Tensorflow for Poets

ImageNet
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MobileNets

MobileNet is a class of efficient models for mobile and 
embedded vision applications. 


Introduced by a team from Google in 2017.


They reach comparable performances to larger 
architectures but using fewer parameters.
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Convolutions in MobileNets (1)
MobileNets use depth-wise separable 
convolutions to build light weight deep 
neural networks (e.g., less parameters).


In general, when we processes a color 
image, convolutions are applied on all 
channels and the result is a single 
“image” (feature map) mixing the 
channels. 


In depth-wise convolutions the channels 
are first kept separate (steps 1-3). A 1x1 
layer of convolutions is finally used to 
combine the multiple channels (step 4).

from townrdsdatascience.comfrom https://arxiv.org/pdf/1704.04861v1.pdf

http://townrdsdatascience.com
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Convolutions in MobileNets (2)

Example: suppose a convolution 
layer based on N 3x3 filters 
(Dk=3) and processing an RGB 
image (M=3) of size HxW


The normal convolutions require 
HxWx(DkxDk)xMxN mult-adds or 
HxWx27xN


Depthwise convolutions require 
HxWx(DkxDk)xM + HxWxMxN 
mult-adds or HxWx27+HxWx3xN

from https://arxiv.org/pdf/1704.04861v1.pdf
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Typical transfer learning 
process

Identify the pre-trained model you would like to use


Load the model and its weights


Modify the last layers (drop original output layer and 
replace it by dense layers and an output that matches 
the number of classes of the new task)


Freeze the first layers and set the last one to 
“trainable”.


Re-compile the new model, train and evaluate. 
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Transfer learning using Keras (1)

from https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299

from tensorflow.keras.applications.mobilenet import MobileNet
from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions
from keras.layers import Dense,GlobalAveragePooling2D

base_model=MobileNet(weights='imagenet',include_top=False) #imports the mobilenet model and discards 
the last 1000 neuron layer.

x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024,activation='relu')(x) #we add dense layers so that the model can learn more complex 
functions and classify for better results.
predictions=Dense(3,activation=‘softmax')(x) #final layer with softmax activation

new_model=Model(inputs=base_model.input,outputs=predictions)

The following example defines a new model based on the MobileNet architecture 
taking all but the last layer. It computes the average of the features computed 
with the convolutional layers (e.g., using a layer GlobalAveragePooling2D), it adds 
a Dense layer (1024 neurons) and defines a new input for a 3 classes problem 
using a softmax activation function.
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Transfer learning using Keras (2)

for i,layer in enumerate(new_model.layers):
  print(i,layer.name)

# Freeze the first 87 layers
for layer in new_model.layers[:87]:
    layer.trainable=False
for layer in new_model.layers[87:]:
    layer.trainable=True

# Compile the new model
new_model.compile(optimizer=‘Adam’,loss=‘categorical_crossentropy',metrics=['accuracy'])

# Fine-tune the new model
new_model.fit(new_train_data, epochs=epochs, validation_data=validation_new_data)

The following code prints the layers composing the new model defined in the 
previous slide. The second part of the code sets the first 87 layers to “non-
trainable” (we also say that we freeze that part of the model) and sets the final 
two Dense layers to trainable. Finale we compile the new model and train it with 
the new data.

from https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299



APE 2024

Vector Embeddings (1)
One of the most fascinating concepts in ML: any object 
(image, text document, sound, etc) can be reduced to a 
vector of numerical values, which we can consider to be 
features of those objects.

https://www.pinecone.io/learn/vector-embeddings/

For example, the output of the convolutional part of a 
CNN computes a vector that “characterizes” the input 
image. That output can be used as a vector 
embedding.  
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Vector Embeddings (2)
Something special about vectors that makes them so 
useful is that such a representation makes it possible 
to translate semantic similarity as perceived by 
humans to proximity in a vector space.


We expect that similar images produce similar 
embeddings or feature vectors and that different 
objects do produce different vectors. 
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Using a pre-trained CNN for 
object characterization with Keras

from https://keras.io/applications/

from tensorflow.keras.applications.vgg16 import VGG16 
from tensorflow.keras.preprocessing import image 
from tensorflow.keras.applications.vgg16 import preprocess_input 
import numpy as np 

model = VGG16(weights='imagenet', include_top=False) 

img_path = ‘/ILSVRC2012_val_00005019.JPEG' 
img = image.load_img(img_path, target_size=(224, 224)) 
x = image.img_to_array(img) 
x = np.expand_dims(x, axis=0) 
x = preprocess_input(x) 

features = model.predict(x) 
embedding = GlobalAveragePooling2D()(features)

This example uses a pre-trained VGG-16 model (using the ImageNet database) to 
compute a vector of features from an image.

features is a vector of 
7x7x512 values 

embedding is a vector 
of 512 values
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Embeddings for transfer learning
An alternative way of performing transfer learning 
consists on using a pre-trained model to compute vector 
embeddings from the input data and using those vectors 
as inputs to a new model (which can be any sort of ML 
model, e.g., K-NN) that is trained using the new data. 

vector embedding

classifier trained 
with new data
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Few-shot learning
We refer to few-shot learning when 
our training set contains very few 
examples.


One way to deal with such a problem is 
by using meta-learning, which aims to 
improve learning across different tasks 
or datasets instead of specializing on a 
single one. 


The idea goes like this: train a model 
to solve different tasks and expect it 
to be almost ready to solve a new one. 
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Meta learning

The idea is to train a model for a certain number of 
epochs on a variety of learning tasks (𝜏1, 𝜏2,…), such that 
at the end, it can solve a new learning task using only a 
small number of training samples.
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figure from Satizabal and Perez-Uribe (2021)

http://doi.org/10.1007/978-3-030-85030-2_42

A simple algorithm 
that implements this 
approach is called 
REPTILE and was 
developed by OpenAI.
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Few-shot learning DEMO using REPTILE

Developed at HEIG-VD in collaboration with Picterra S.A.; funded by the Swiss Space Center


