
9. TRANSFER LEARNING,
EMBEDDINGS AND META-

LEARNING

APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

Stephan Robert-Nicoud
HEIG-VD/HES-SO

Credit: Andres Perez-Uribe

APE 2024

Objectives

Understand how can we profit from pre-trained
deep neural network models to develop new
applications

Apply the transfer learning methodology using
your own data

Understand the concept of vector embeddings

Understand the concept of meta-learning and how
to learn from few data

APE 2024

Microsoft’s Seeing AI app

Turns the visual world into an
audible experience

currency bills scenes & photo
description read texts object recognition

APE 2024

Seeing AI object recognition

APE 2024

https://teachablemachine.withgoogle.com/

Teachable machine

https://teachablemachine.withgoogle.com/

APE 2024

Three amazing observations

The teachable machine can be trained with small data!

there is no need for Big Data

The teachable machine can be trained on a standard
machine

No GPUs are needed and the training does not
take too long

The teachable machine can work on a browser and
may work on an embedded device!

APE 2024

Neural Networks’ data requirement

wjkxi
wij

DB

examples
(X, T)

CNN model

output

target or desired output

error or loss function

The more weights to learn the more data is necessary to avoid overfitting

APE 2024

CNN learned filters
Many CNNs learn Gabor-like filters or color blob detection
in the first layers and many feature detectors obtained by
training a CNN with a large database appear to be useful
for other image processing tasks.

APE 2024

Transfer learning

https://arxiv.org/abs/1411.1792

• The idea is to use the
first layers of a CNN that
was previously trained
(i.e., with lots of data)
and expect to be able to
fine-tune only the
subsequent ones in order
to use it for a new task.

frozen weights
(copied from the pre-

trained model)
adapted weights

APE 2024

Quadrants of transfer learning

from Fei Fei Li and https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

frozen

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751

APE 2024

Pre-trained CNNs

Object recognition

VGGs, ResNets, Inceptions, DenseNets

MobileNet (light model for embedded systems)

Face recognition

VGG-Face

Object localization

Mask R-CNN, YOLO, SSD

Semantic segmentation

U-NET

Pose estimation

PoseNet, OpenPose

X-Ray diagnosis

CheXNet

APE 2024

Some available models

from https://keras.io/applications/

APE 2024

Using a pre-trained CNN for
object recognition with Keras

from https://keras.io/applications/

from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')

img_path = '/ILSVRC2012_val_00005019.JPEG'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
#Predicted: [('n02109961', 'Eskimo_dog', 0.48957556), ('n02110185', 'Siberian_husky', 0.35920256), ('n02110063',
'malamute', 0.15049036)]

Let’s simply read the weights of a pre-trained model (e.g., Resnet-50 trained with
the ImageNet database) and use it to recognize the object in a given image:

APE 2024

Transfer learning using MobileNet

1.2M images MobileNet
(pre-trained
model by
Google)

+ MyImages

Customized
system

Increasing
number of
available models

fine-tuning

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
Example: Tensorflow for Poets

ImageNet

APE 2024

MobileNets

MobileNet is a class of efficient models for mobile and
embedded vision applications.

Introduced by a team from Google in 2017.

They reach comparable performances to larger
architectures but using fewer parameters.

APE 2024

Convolutions in MobileNets (1)
MobileNets use depth-wise separable
convolutions to build light weight deep
neural networks (e.g., less parameters).

In general, when we processes a color
image, convolutions are applied on all
channels and the result is a single
“image” (feature map) mixing the
channels.

In depth-wise convolutions the channels
are first kept separate (steps 1-3). A 1x1
layer of convolutions is finally used to
combine the multiple channels (step 4).

from townrdsdatascience.comfrom https://arxiv.org/pdf/1704.04861v1.pdf

http://townrdsdatascience.com

APE 2024

Convolutions in MobileNets (2)

Example: suppose a convolution
layer based on N 3x3 filters
(Dk=3) and processing an RGB
image (M=3) of size HxW

The normal convolutions require
HxWx(DkxDk)xMxN mult-adds or
HxWx27xN

Depthwise convolutions require
HxWx(DkxDk)xM + HxWxMxN
mult-adds or HxWx27+HxWx3xN

from https://arxiv.org/pdf/1704.04861v1.pdf

APE 2024

Typical transfer learning
process

Identify the pre-trained model you would like to use

Load the model and its weights

Modify the last layers (drop original output layer and
replace it by dense layers and an output that matches
the number of classes of the new task)

Freeze the first layers and set the last one to
“trainable”.

Re-compile the new model, train and evaluate.

APE 2024

Transfer learning using Keras (1)

from https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299

from tensorflow.keras.applications.mobilenet import MobileNet
from tensorflow.keras.applications.mobilenet import preprocess_input, decode_predictions
from keras.layers import Dense,GlobalAveragePooling2D

base_model=MobileNet(weights='imagenet',include_top=False) #imports the mobilenet model and discards
the last 1000 neuron layer.

x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024,activation='relu')(x) #we add dense layers so that the model can learn more complex
functions and classify for better results.
predictions=Dense(3,activation=‘softmax')(x) #final layer with softmax activation

new_model=Model(inputs=base_model.input,outputs=predictions)

The following example defines a new model based on the MobileNet architecture
taking all but the last layer. It computes the average of the features computed
with the convolutional layers (e.g., using a layer GlobalAveragePooling2D), it adds
a Dense layer (1024 neurons) and defines a new input for a 3 classes problem
using a softmax activation function.

APE 2024

Transfer learning using Keras (2)

for i,layer in enumerate(new_model.layers):
 print(i,layer.name)

Freeze the first 87 layers
for layer in new_model.layers[:87]:
 layer.trainable=False
for layer in new_model.layers[87:]:
 layer.trainable=True

Compile the new model
new_model.compile(optimizer=‘Adam’,loss=‘categorical_crossentropy',metrics=['accuracy'])

Fine-tune the new model
new_model.fit(new_train_data, epochs=epochs, validation_data=validation_new_data)

The following code prints the layers composing the new model defined in the
previous slide. The second part of the code sets the first 87 layers to “non-
trainable” (we also say that we freeze that part of the model) and sets the final
two Dense layers to trainable. Finale we compile the new model and train it with
the new data.

from https://towardsdatascience.com/transfer-learning-using-mobilenet-and-keras-c75daf7ff299

APE 2024

Vector Embeddings (1)
One of the most fascinating concepts in ML: any object
(image, text document, sound, etc) can be reduced to a
vector of numerical values, which we can consider to be
features of those objects.

https://www.pinecone.io/learn/vector-embeddings/

For example, the output of the convolutional part of a
CNN computes a vector that “characterizes” the input
image. That output can be used as a vector
embedding.

APE 2024

Vector Embeddings (2)
Something special about vectors that makes them so
useful is that such a representation makes it possible
to translate semantic similarity as perceived by
humans to proximity in a vector space.

We expect that similar images produce similar
embeddings or feature vectors and that different
objects do produce different vectors.

APE 2024

Using a pre-trained CNN for
object characterization with Keras

from https://keras.io/applications/

from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input
import numpy as np

model = VGG16(weights='imagenet', include_top=False)

img_path = ‘/ILSVRC2012_val_00005019.JPEG'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

features = model.predict(x)
embedding = GlobalAveragePooling2D()(features)

This example uses a pre-trained VGG-16 model (using the ImageNet database) to
compute a vector of features from an image.

features is a vector of
7x7x512 values

embedding is a vector
of 512 values

APE 2024

Embeddings for transfer learning
An alternative way of performing transfer learning
consists on using a pre-trained model to compute vector
embeddings from the input data and using those vectors
as inputs to a new model (which can be any sort of ML
model, e.g., K-NN) that is trained using the new data.

vector embedding

classifier trained
with new data

APE 2024

Few-shot learning
We refer to few-shot learning when
our training set contains very few
examples.

One way to deal with such a problem is
by using meta-learning, which aims to
improve learning across different tasks
or datasets instead of specializing on a
single one.

The idea goes like this: train a model
to solve different tasks and expect it
to be almost ready to solve a new one.

APE 2024

Meta learning

The idea is to train a model for a certain number of
epochs on a variety of learning tasks (𝜏1, 𝜏2,…), such that
at the end, it can solve a new learning task using only a
small number of training samples.

T1 T2

T3T4

θ0

θ

∇L1
∇L2

∇L3

∇L4

6B;X j, .B�;`�K `2T`2b2MiBM; i?2 _1ShAG1
�H;Q`Bi?KX h?2 KQ/2H Bb `�M/QKHv BMBiB�H@
Bx2/ rBi? T�`�K2i2`b θ0X h?2`2 �`2 9 i�bFb
BM i?2 2t�KTH2 T1- T2- T3- T4X 6Q` i?2 b�F2
Q7 bBKTHB+Biv- i�bFb �`2 b�KTH2/ BM M�im@
`�H Q`/2` Ui?2v Kmbi #2 b�KTH2/ `�M/QKHvVX
"H�+F /Qii2/ HBM2b b?Qr i?2 ;`�/B2Mi 7Q` i?2
9 }`bi K2i�@H2�`MBM; bi2Tb �M/ `2/ HBM2b b?Qr
i?2 T�i? 7QHHQr2/ #v KQ/2H T�`�K2i2`b �7@
i2` 2�+? K2i�@H2�`MBM; bi2TX AM i?Bb 2t�KTH2
i?2 T�`�K2i2`b θ �`2 Q#i�BM2/ �7i2` ;QBM; j
iBK2b Qp2` i?2 7Qm` i�bFbX

j 1tT2`BK2Mib

h?Bb b2+iBQM /2b+`B#2b i?2 2tT2`BK2Mi�H b2imT, i?2 /�i�b2ib r2 mb2/ �M/ ?Qr i?2
/Bz2`2Mi `2bmHib r2`2 Q#i�BM2/X

jXR .�i�b2ib

h?2 arBbb +QKT�Mv SB+i2``� U?iiTb,ffTB+i2``�X+?fV T`QpB/2/ � TQQH Q7 /�i�b2ib
r?Qb2 M�K2b �`2 b?QrM BM h�#H2 RX h?2 bBx2- `2bQHmiBQM �M/ MmK#2` Q7 �MMQi�@
iBQMb BM i?2 BK�;2b �`2 p2`v /Bp2`b2- ;2M2`�iBM; � `B+? 2MpB`QMK2Mi r?B+? b?QmH/
2M?�M+2 i?2 2z2+ib Q7 _1ShAG1X 1�+? /�i�b2i ?�b T`2@/2}M2/ i`�BMBM; �M/ p�HB@
/�iBQM �`2�b K�FBM; Bi TQbbB#H2 iQ +QKTmi2 � K2�bm`2 Q7 T2`7Q`K�M+2 7Q` +2`i�BM
`2;BQMb i?�i r2`2 MQi �p�BH�#H2 iQ i?2 /2i2+iQ`b /m`BM; i`�BMBM;X h?2 /�i�b2ib
b?QrM BM h�#H2 R r2`2 +�Tim`2/ �i /Bz2`2Mi `2bQHmiBQMb9 �M/ +QMi�BM Q#D2+ib Q7
/Bz2`2Mi bBx2b UBX2X- 7`QK #B`/b iQ #mBH/BM;bVX aQK2 Q7 i?2K r2`2 +QHH2+i2/ �M/
�MMQi�i2/ #v `2�H mb2`b �M/ ?2M+2- i?2v �`2 MQi Tm#HB+X JQ`2Qp2`- i?2 /�i�b2i
+?Q+QH�i2n?2�`ibnR Bb MQi �M �2`B�H BK�;2 �M/ i?mb- Bi `2T`2b2Mib �M QmiHB2` i�bF-
r?B+? b?QmH/ #2 p2`v /Bz2`2Mi 7`QK i?2 Qi?2`bX

h�#H2 R, _2�H@rQ`H/ /�i�b2ib T`QpB/2/ #v SB+i2``�X Sm#HB+ QM2b �`2 ?B;?HB;?i2/
rQQ/nR +?Q+QH�i2n?2�`ibnR +BivnRn�7`B+� bQH�`nT�M2HbnR �;`Bne
+BivnRnb� +BivnRn2m`QT2 +Q+QMmibnR �;`Bnd bHmKnR
�;`BnR +QHQMv#B`/b `QQ7nQ#D2+ibnR im`iH2bnR +QrbnR
+Qrbnk b?BTTBM;n+QMi�BM2`bn 72biBp�HnR i`22bnk b?22TnR
;`�p2v�`/nR �;`Bnk �;`Bnj i`22bnR bQH�`n7�`KnR
�;`Bn9 �;`Bn8 `27m;22n+�KTnR i`�BMbnR `Q�/bnR

9 h?2`2 �`2 bm#@/�i�b2ib rBi? /Bp2`b2 BK�;2b Q7 i?2 b�K2 ivT2 �i /Bz2`2Mi `2bQHmiBQMb

new task

figure from Satizabal and Perez-Uribe (2021)

http://doi.org/10.1007/978-3-030-85030-2_42

A simple algorithm
that implements this
approach is called
REPTILE and was
developed by OpenAI.

APE 2024

Few-shot learning DEMO using REPTILE

Developed at HEIG-VD in collaboration with Picterra S.A.; funded by the Swiss Space Center

