— — — — m— T = — e S SE— — _— o= — T— S— La— e T S - . —

8. CONVOLUTIONAL NEURAL
NETWORK ARCHITECTURES

Stephan Robert-Nicoud
HEIG-VD/HES-SO

Credit: Andres Perez-Urlbe

@ APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

Objectives

Understand the evolution of the architectures of
Convolutional Neural Networks

Understand the motivation and the characteristics
of the main architectures of Convolutional Neural
Networks

Train a Convolutional Neural Network for an image
recognition problem

APE 2024

LeNet-5 (1989)

O By Yann LeCun and colleagues (AT&T Bell Labs)

10 output unts lly connectes 0 " Backpropagation applied to
™ 800 finks Handwritten Zip code Recognition”,

layer H3 ooooOoOooo g
30 hidden units fully connected Neural Computation 1
~ 6000 links

layer H2 ;
12'x 16=192 “Large networks trained b
H2.1 .

hidd t) ~ 40,000 links . .

aden units B from 12 kernels Backpropagation can be applied to
ayer Hi | T OXoX8 real image-recognition problems

(8 B4 = 768 | " without complex pre-processing

hidden units - il : : s
| ~20,000 links requiring detailed engineering

g
R

2t from 12 kernels

Trained on 9298 digits from US mail
during 3 days on a Sun Sparc
Station 1

256 input units

HE " from http://yann.lecun.com/exdb/lenet/
I G APE 2024

The ILSVRC challenge

ImageNe’r Large Scale Visual Recognition Challenge

Classification error

AIexNet 8 layers
. ZF, 8 layers
16% BN Traditional computer vision
VGG 19 layers I Deep learning computer vision
12% - GooglLeNet, 22 layers
ResNet,152 layers
\ (Ensemble)
B : C
8 0y

ShaIIow

100% accuracy and reliability not realistic
2010 2011 2012 2013 2014 2015 2016 2017

from synopsys.com

ImageNet: 15 million images (22k categories), human labeled

HE" ILSVRC Challenge: ~1000 images of 1000 categories (top-1/top-5 error rates)
IG APE 2024

http://synopsys.com

ImageNet

2007-2010 human labeling using
Amazon Mechanical Turk

49K workers from 167 countries

Human performance: ~5% (top-5
error) due to class unawareness,
need for fine-grained recognition

from https://www.lmage-net.org/static_files/files/imagenet_ilsvre2017# v1.0.pof

APE 2024

By Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton

62-million parameters model trained on ImageNet data using batch stochastic
gradient descent, with specific values for momentum and weight decay. Trained on
two GTX 580 GPUs for 5 to 6 days.

Used Relus (instead of tanh), data augmentation and dropout.
Won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge):

error = 15.4% (second place 26.2%).

55 dense dense

dense

> >

1000
Max Max 4096 4096
Max pooling pooling

Stride p00|lng

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande

APE 2024

ZF Net (2013)

O by Matthew Zeiler and Rob Fergus from NYU

O Trained on only 1.3M images (ImageNet) using batch stochastic
gradient descent to minimize cross-entropy.

O Used smaller kernel sizes (7x7) and increasing number of filters

O Trained on two GTX 580 GPUs for 12 days.
0 Won the 2013 ILSVRC: error = 11.2%

image size 224 13

13 13
filter size 7 ¢ 3 ‘L 3
1 384 1 384 256
| j‘\ N N

istride 2 3x3 max
pool 4096
stride 2 units

6 256
Input Image -

C
class
softmax

Layer 1 Layer 2 Layer 3 Layer4 Layer 5 Layer6 Layer7 Output

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande
APE 2024

VGG Net (2014)

by K. Simonyan and A. Zisserman from the Visual Geometry Group of
the University of Oxford

VGG-16 is a 16-layer CNN and VGG-19 is a 19-layer CNN that strictly
used 3x3 filters with stride and pad of 1, along with 2x2 maxpooling
layers with stride 2

Number of kernels: 64, 128, 256, 512, 512
Did not win ILSVRC (error 7.3%) but introduced a simple architecture
Trained on 4 Nvidia Titan Black GPUs for two to three weeks

VGG-16 has more than 138-million parameters and VGG-19 has almost
143-million parameters.

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande
APE 2024

Ideas behind VGG Nets

224 x 224 x3 224 x 224 x 64

Eb3 gb

56(x 56 x 256
) i & @b &1

28 x 28 x 512
44““25 01 x 008 1 X 1000

(—) convolution+ReLU
) max pooling
fully nected+RelU
softmax

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
APE 2024

Downsample input with stride

O Stride: the amount of movement between
applications of the filter to the input image.

O Example: no padding and stride=1

7 X7 Input Volume 5 x 5 Output Volume

The result is a downsampled image at the outpuf, e.qg.,
5x5 instead of 7x7.

APE 2024

Ideas behind VGG Nets (2)

The Alexnet convolutional kernels of sizes 11x11, 5x5, and 3x3 can be
replicated by making use of multiple 3x3 kernels as building blocks, but
reducing the number of parameters to learn.

Input Feature Map
and Receptive Field Output for each

415 ’ﬁ””“ﬁe“ Suppose a 5x5x1 input. A 5x5
9 |10 :
kR kernel (25 parameters) will

16171819 produce a 1x1 output

22123 |24

This can be computed by two
Output Feature ldyers OF 3)(3 kernels, S'l'rid€=1 1-00

Map of 1st conv

laver (2 x 9 parameters)

Similarly a 11x11 filter (121

parameters) can be computed by
five 3x3 kernels, stride=1 (45

Input Feature Map Output Feature

of 2nd conv layer Map of 2nd conv Pdrdm efe I'"S)

layer

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96
APE 2024

GooglLeNet (2015)
0 Winner of ILSVRC'14 (error 6.7%)

0 A new architecture with more than 100 layers in total, but
not necessarily stacked up sequentially and without fully-
connected layers. It uses 12x less weights than AlexNet

filtter concatenation B

inception module composed of multiple parallel
convolutional layers

Green box shows parallel region of GooglLeNet

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande
APE 2024

Ideas behind Inception Networks (1)

INCEPTI0N TODULES

e Instead of choosing a single
size (1x1, 3x3 or 5x5) kernel
for a layer, use them “all” and

concatenate the outputs

e different kernel
sizes allows the
identification of
features at
different scales

APE 2024

e Use 1x1 convolutions (Fig a) to
perform feature pooling or
dimensionality reduction.

e Example: applying 32 1x1x192
filters to the 192 28x28

s images in the figure b)
CONV1x 1 s
produces 32 28x28 images
28 x 28 X 192 1x1 %192 9828 x32

32 filters

A number of filters goes from 192 to 32.

from https://www.youtube.com/watch?v=C867XvgpejM (by A. Ng)

APE 2024

https://www.youtube.com/watch?v=C86ZXvgpejM

Ideas behind Inception Networks (3)

e Use 1x1 convolutions before
3x3 or 5x5 convolutions to
perform feature pooling
and reduce the number of
operations.

e Example: applying 16 1x1x192 filters to the incoming 192
28x28 images before applying 32 5x5 filters requires 12.4M
multiplications instead of ~120M multiplications without the

1x1 convolutions.

from https://www.youtube.com/watch?v=C867XvgpejM (by A. NQg)

APE 2024

https://www.youtube.com/watch?v=C86ZXvgpejM

Batch-normalization (1)

Sergey Ioffe and Christian Szegedy from Google (2015)

O Problem: when two inputs are in completely different scales, say a range of xl
is [1000-2000] and range of x2 is [0.1-0.5], using them as-is has implications
on optimizing the loss function (e.g., by gradient descent). Intuitively, the

model will tend to be more influenced by xI.

O To deal with this problem, we generally normalize inputs before using a neural
network. Normalization, in general refers to squashing a diverse range of
numbers to a fixed range.

O Ioffe and Szegedy did the same analysis within the network and noticed that

the learning was enhanced when the inputs to a subsequent sub-network or
layer are also normalized.

APE 2024

Batch-normalization (2)

A “learnable” normalization transform that is applied to every mini-batch
during the learning process:

start by normalizing the inputs (per dimension) per batch (i.e., by setting the
mean to zero and the standard deviation to 1), but then use the learnable
parameters y and to scale and shift the input data. y and § are learned over

all the database and serve to restore the expressiveness of the network.

Input: Values of = over a mini-batch: B = {x1._ . };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

APE 2024

Batch-normalization (3)

O It has been shown that batch normalization accelerates training
convergence (i.e., less learning steps are required), allows larger learning
rate values, the training of models using saturating nonlinearities (e.g.,
sigmoids), and not needing dropout.

0O It was originally proposed to be used before the non-linearity (e.g., relu),
but it has been reported to work even better after it.

example of batch normalization for an mlp
from keras.layers import Dense MLP model

from keras.layers import BatchNormalization

ﬁéael.add(Dense(32, activation="relu'))
model.add(BatchNormalization())
model .add(Dense(1))

example of batch normalization for an cnn

from keras.layers import Dense CNN model
from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import BatchNormalization

model .add(Conv2D(32, (3,3), activation="relu'))
model .add(Conv2D(32, (3,3), activation="relu'))
model .add(BatchNormalization())

10 model .add(MaxPooling2D())

11 model.add(Dense(1))

12 ...

Loo~NOOUTHAE WNRE

APE 2024

ResNet (2015)

A degradation of performance was observed when going
deeper (e.g., from 20 to >50 layers) on the ImageNet
benchmark.

A team from Microsoft won ILSVRC'1S (error: 3.6%)
using a 152-layer CNN architecture exploiting
« shortcut connections ».

These so-called ResNet networks appear to have a
better performance than plain networks with the same
number of weights (ResNet152V2 has 60-million
weights). Training took 3 weeks using 8 GPUs.

APE 2024

ResNet’s residual blocks

O The residual block assumes that it is easier to learn a
mapping from x -> F(x) + x than from x -> to a new
function H(x)

A similar architecture called "Highway networks” was
proposed by Schmidhuber et al. He claims to have
successfully trained the first deep neural network with
more than 100 layers.

O The team from Microsoft tested a 1202-layer network that
performed less well.

X
Y

weight layer

relu
\ 4 X

weight layer

identity

Figure 2. Residual learning: a building block.

APE 2024

DenseNet (2017)

Prediction
S Dense Block 1 S Dense Block 2 S Dense Block 3
=} =] 3 [
i Fj I B S] e = e e S ->|3 > ‘horse”
c AT A c >] » c = N =) g

O Proposed by researchers from Cornell & Tsinghua universities
and Facebook.

O For each layer, the feature-maps (i.e., the output of a
convolution) of all preceding layers are used as inputs, and its
own feature-maps are used as inputs into all subsequent layers.

DenseNets have several advantages: they alleviate the
vanishing-gradient problem, strengthen feature propagation,
encourage feature reuse, and substantially reduce the number
of parameters.

APE 2024

DenseNets vs ResNets

27.5

—A— ResNets —A— ResNets
ResNet-34 | —&—DenseNets-BC|| 6.5 . ResNet-34 —A— DenseNets-BC

25.5¢
DenseNet-121

ResNet-50

DenseNet-121

24.5¢ ResNet-50

23.51

3
&
p .
o
=
(0]
C
S
2
©
i}
T
>

validation error (%)

ResNet-101
ResNet-=152 1 22.51 ResNet=152

DenseNet-264 DenseNet-264

21.5 : ; ' : : :
4 5 6 8 05 0.7 1 126 15 175 2 225 25
#parameters #flops x 10"

O DenseNets reach similar performance than ResNets with many less
parameters (left) and require less computation (right).

APE 2024

152-layers

22-layers
/ / 154-layers
299 225

3.57

1

19-layers
5.

8-layers

APE 2024

S S ¢

~

(%) @yes Jome g doy

}oN@bowr
uo 2oupwdJojuad juom4au |punau daap

Inception V3, Google, 2015

O)
Im
o
-
(4v]
()]
et
QD
=
X o
(&
Wa
e /
. N
p—_
=
()
A e
[T
(4v)
()]
£ @
-

~J
(=]
A

=1
w

&
e
J
o
=3
o
W
m

—
Q
o

=

(=)
(=]

95M 125M 155M

504
NS e \«*@e‘@\e AP0 40 ‘3“ 60 AOY ASE D b
P\e P\\e $ \\\e \i(, \1(, V\e \Qe}. ‘\o 0O
A 00 ?@’ e° Q\oc, e?
Number of parameters
Canziani et al., 2017

APE 2024

EfficientNets (2020)

O Mingxing Tan and Quoc Le from the Brain Team of Google
Research systematically studied model scaling and identified
that carefully balancing network depth, width, and
resolution can lead fo better performances.

)

Imagenet Top-1 Accuracy (%

,/

7’

..
Pl

e
:Xception

7’

°
-DenseNet-201

L]
ResNet-34

7 L.
P

EfficientNet-B7

Lo ’
-+*" ResNeXt-101

.o
Inception-ResNet-v2

eResNet-152

AmoebaNet-C

-2

Topl Acc. #Params

EfficientNet-B1

ResNet-152 (He et al., 2016)

77.8% 60M
79.1% 7.8M

ResNeXt-101 (Xie

EfficientNet-B3

etal., 2017)

80.9% 84M
81.6% 12M

SENet (Hu et al., 2018)
NASNet-A (Zoph et al., 2018)

EfficientNet-B4

82.7%
82.7%
82.9%

146M
89M
19M

GPipe (Huang et al., 2018)

EfficientNet-B7
Not plotted

84.3%
84.3%

556M
66M

20 40

60 80 100

120 140 160 180

Number of Parameters (Millions)

from https://arxiv.org/paf/1905.1194ev5 pof
APE 2024

EfficientNets scaling (1)

Example: assume ResNet-18 as a reference architecture processing
images of 224x224 resolution: d=1.0(depth) r=1.0(resolution)

A new architecture with d=2.0 and r=1.3 will be a ResNet-36
processing 299x299 images. The width factor modifies the
number of filters per layer.

#channels

‘ "+ higher
7} resolution HXW ; : resolution

| | |

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling

G
-
G
>
\
ﬁ_
o
v
()
Q
N
e
o
N
o
=
>
-
<
<
b
£
<
3
&

APE 2024

EfficientNets scaling (2)

Tan et Le found that they could define a compound scaling
factor ¢: d= a?, w = 3%, r = v¢ , where af~y21

Given that the computational load (FLOPS) of a deep network
is proportional to d, w2 and r2. Thus, using the constraint

a.82y2= 2, the FLOPS get proportional to 2¢.

EfficientNet-BO performs better than ResNet-50 (~5x less
parameters; 11x less FLOPS) and DenseNet-169 (~2.5x less
parameters; 9x less FLOPS); EfficientNet-Bl performs better
than ResNet-152 (T7.5x less parameters; 16x less FLOPS), etc.

from https://arxiv.org/pdf/1905.1194ev5 pof

APE 2024

« Democratization » of Deep Learning

ImageNet Large Scale Visual Recognition Challenge results

In the competition’s first year
I — teams had varying success.
Every team got at least 25%
wrong.

In 2012, the team to first use
deep learning was the only
team to get their error rate
below 25%.

The following year
nearly every team got
25% or fewer wrong.

In 2017, 29 of 38
teams got less than
5% wrong.

By D. Gershgorn, Quartz. 2017

Training efficiency improvement

Besides the improvement of hardware (Moores law), the amount of
compute needed to train a neural net has decreased by 2 every 16
months (thanks to better hyperparameter search, architectures

and training procedures).
APE 2024 https://openai.com/research/ai-and-efficiency

