
8. CONVOLUTIONAL NEURAL
NETWORK ARCHITECTURES

APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

Stephan Robert-Nicoud
HEIG-VD/HES-SO

Credit: Andres Perez-Uribe

APE 2024

Objectives

Understand the evolution of the architectures of
Convolutional Neural Networks

Understand the motivation and the characteristics
of the main architectures of Convolutional Neural
Networks

Train a Convolutional Neural Network for an image
recognition problem

APE 2024

LeNet-5 (1989)
By Yann LeCun and colleagues (AT&T Bell Labs)

“Backpropagation applied to
Handwritten Zip code Recognition”,
Neural Computation 1

“Large networks trained by
Backpropagation can be applied to
real image-recognition problems
without complex pre-processing
requiring detailed engineering”

Trained on 9298 digits from US mail
during 3 days on a Sun Sparc
Station 1

from http://yann.lecun.com/exdb/lenet/

APE 2024

The ILSVRC challenge

ImageNet: 15 million images (22k categories), human labeled

ILSVRC Challenge: ~1000 images of 1000 categories (top-1/top-5 error rates)

from synopsys.com

ImageNet Large Scale Visual Recognition Challenge

http://synopsys.com

APE 2024

ImageNet

2007-2010 human labeling using
Amazon Mechanical Turk

49K workers from 167 countries

Human performance: ~5% (top-5
error) due to class unawareness,
need for fine-grained recognition

ImageNet (academic):
14M images, 20K classes
1.2M images, 1K classes

from https://www.image-net.org/static_files/files/imagenet_ilsvrc2017_v1.0.pdf

APE 2024

AlexNet (2012)
By Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton

62-million parameters model trained on ImageNet data using batch stochastic
gradient descent, with specific values for momentum and weight decay. Trained on
two GTX 580 GPUs for 5 to 6 days.

Used ReLus (instead of tanh), data augmentation and dropout.

Won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge):
error = 15.4% (second place 26.2%).

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande

APE 2024

ZF Net (2013)
by Matthew Zeiler and Rob Fergus from NYU

Trained on only 1.3M images (ImageNet) using batch stochastic
gradient descent to minimize cross-entropy.

Used smaller kernel sizes (7x7) and increasing number of filters

Trained on two GTX 580 GPUs for 12 days.

Won the 2013 ILSVRC: error = 11.2%

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande

APE 2024

VGG Net (2014)
by K. Simonyan and A. Zisserman from the Visual Geometry Group of
the University of Oxford

VGG-16 is a 16-layer CNN and VGG-19 is a 19-layer CNN that strictly
used 3x3 filters with stride and pad of 1, along with 2x2 maxpooling
layers with stride 2

Number of kernels: 64, 128, 256, 512, 512

Did not win ILSVRC (error 7.3%) but introduced a simple architecture

Trained on 4 Nvidia Titan Black GPUs for two to three weeks

VGG-16 has more than 138-million parameters and VGG-19 has almost
143-million parameters.

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande

APE 2024

Ideas behind VGG Nets

• VGGNet was born out of the need to reduce the # of
parameters in the CONV layers and improve on training time.

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96

APE 2024

Downsample input with stride
Stride: the amount of movement between
applications of the filter to the input image.

Example: no padding and stride=1

The result is a downsampled image at the output, e.g.,
5x5 instead of 7x7.

APE 2024

Ideas behind VGG Nets (2)
The Alexnet convolutional kernels of sizes 11x11, 5x5, and 3x3 can be
replicated by making use of multiple 3x3 kernels as building blocks, but
reducing the number of parameters to learn.

• Suppose a 5x5x1 input. A 5x5
kernel (25 parameters) will
produce a 1x1 output

• This can be computed by two
layers of 3x3 kernels, stride=1 too
(2 x 9 parameters)

• Similarly a 11x11 filter (121
parameters) can be computed by
five 3x3 kernels, stride=1 (45
parameters)

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96

APE 2024

GoogLeNet (2015)
Winner of ILSVRC’14 (error 6.7%)

A new architecture with more than 100 layers in total, but
not necessarily stacked up sequentially and without fully-
connected layers. It uses 12x less weights than AlexNet

from “9 Deep Learning papers ou need to know about”, by Adit Deshpande

inception module composed of multiple parallel
convolutional layers

filter concatenation

APE 2024

Ideas behind Inception Networks (1)

• Instead of choosing a single
size (1x1, 3x3 or 5x5) kernel
for a layer, use them “all” and
concatenate the outputs

• different kernel
sizes allows the
identification of
features at
different scales

APE 2024

Ideas behind Inception Networks (2)

• Use 1x1 convolutions (Fig a) to
perform feature pooling or
dimensionality reduction.

• Example: applying 32 1x1x192
filters to the 192 28x28
images in the figure b)
produces 32 28x28 images

from https://www.youtube.com/watch?v=C86ZXvgpejM (by A. Ng)

a)

b)

https://www.youtube.com/watch?v=C86ZXvgpejM

APE 2024

Ideas behind Inception Networks (3)

• Use 1x1 convolutions before
3x3 or 5x5 convolutions to
perform feature pooling
and reduce the number of
operations.

• Example: applying 16 1x1x192 filters to the incoming 192
28x28 images before applying 32 5x5 filters requires 12.4M
multiplications instead of ~120M multiplications without the
1x1 convolutions.

from https://www.youtube.com/watch?v=C86ZXvgpejM (by A. Ng)

https://www.youtube.com/watch?v=C86ZXvgpejM

APE 2024

Batch-normalization (1)

Problem: when two inputs are in completely different scales, say a range of x1
is [1000–2000] and range of x2 is [0.1–0.5], using them as-is has implications
on optimizing the loss function (e.g., by gradient descent). Intuitively, the
model will tend to be more influenced by x1.

To deal with this problem, we generally normalize inputs before using a neural
network. Normalization, in general refers to squashing a diverse range of
numbers to a fixed range.

Ioffe and Szegedy did the same analysis within the network and noticed that
the learning was enhanced when the inputs to a subsequent sub-network or
layer are also normalized.

Sergey Ioffe and Christian Szegedy from Google (2015)

APE 2024

Batch-normalization (2)
A “learnable” normalization transform that is applied to every mini-batch
during the learning process:

start by normalizing the inputs (per dimension) per batch (i.e., by setting the
mean to zero and the standard deviation to 1), but then use the learnable
parameters 𝛾 and 𝛽 to scale and shift the input data. 𝛾 and 𝛽 are learned over
all the database and serve to restore the expressiveness of the network.

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

APE 2024

Batch-normalization (3)
It has been shown that batch normalization accelerates training
convergence (i.e., less learning steps are required), allows larger learning
rate values, the training of models using saturating nonlinearities (e.g.,
sigmoids), and not needing dropout.

It was originally proposed to be used before the non-linearity (e.g., relu),
but it has been reported to work even better after it.

MLP model

CNN model

APE 2024

ResNet (2015)

A degradation of performance was observed when going
deeper (e.g., from 20 to >50 layers) on the ImageNet
benchmark.

A team from Microsoft won ILSVRC’15 (error: 3.6%)
using a 152-layer CNN architecture exploiting
« shortcut connections ».

These so-called ResNet networks appear to have a
better performance than plain networks with the same
number of weights (ResNet152V2 has 60-million
weights). Training took 3 weeks using 8 GPUs.

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

APE 2024

ResNet’s residual blocks
The residual block assumes that it is easier to learn a
mapping from x -> F(x) + x than from x -> to a new
function H(x)

A similar architecture called “Highway networks” was
proposed by Schmidhuber et al. He claims to have
successfully trained the first deep neural network with
more than 100 layers.

The team from Microsoft tested a 1202-layer network that
performed less well.

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

APE 2024

DenseNet (2017)

Proposed by researchers from Cornell & Tsinghua universities
and Facebook.

For each layer, the feature-maps (i.e., the output of a
convolution) of all preceding layers are used as inputs, and its
own feature-maps are used as inputs into all subsequent layers.

DenseNets have several advantages: they alleviate the
vanishing-gradient problem, strengthen feature propagation,
encourage feature reuse, and substantially reduce the number
of parameters.

from https://arxiv.org/pdf/1608.06993.pdf

APE 2024

DenseNets vs ResNets

from https://arxiv.org/pdf/1608.06993.pdf

DenseNets reach similar performance than ResNets with many less
parameters (left) and require less computation (right).

APE 2024

The alchemy of Machine Learning

Inception V3, Google, 2015

shallow 8-layers

19-layers

22-layers

152-layers

154-layers

de
ep

 n
eu

ra
l n

et
w
or

k
pe

rf
or

m
an

ce
 o

n
Im

ag
eN

et

APE 2024

Evolution of CNN architectures
20

12

20
14

20
15

20
16

Alex
Net

VGG-1
6

VGG-1
9

Res
Net-

50
Res

Net-
10

1
Inc

ep
tio

n V
4

Number of parameters
Canziani et al., 2017

APE 2024

EfficientNets (2020)
Mingxing Tan and Quoc Le from the Brain Team of Google
Research systematically studied model scaling and identified
that carefully balancing network depth, width, and
resolution can lead to better performances.

from https://arxiv.org/pdf/1905.11946v5.pdf

APE 2024

EfficientNets scaling (1)
Example: assume ResNet-18 as a reference architecture processing
images of 224x224 resolution: d=1.0(depth) r=1.0(resolution)

A new architecture with d=2.0 and r=1.3 will be a ResNet-36
processing 299x299 images. The width factor modifies the
number of filters per layer.

fr
om

 h
tt

ps
:/

/a
rx

iv
.o

rg
/p

d
f/

19
0

5
.1

19
4

6
v5

.p
d

f

APE 2024

EfficientNets scaling (2)
Tan et Le found that they could define a compound scaling
factor ɸ: d= ɑɸ, w = βɸ, r = γɸ , where ɑ,β,γ≥1

Given that the computational load (FLOPS) of a deep network
is proportional to d, w2 and r2. Thus, using the constraint
ɑ.β2.γ2 ≈ 2, the FLOPS get proportional to 2ɸ.

EfficientNet-B0 performs better than ResNet-50 (~5x less
parameters; 11x less FLOPS) and DenseNet-169 (~2.5x less
parameters; 9x less FLOPS); EfficientNet-B1 performs better
than ResNet-152 (~7.5x less parameters; 16x less FLOPS), etc.

from https://arxiv.org/pdf/1905.11946v5.pdf

APE 2024

« Democratization » of Deep Learning

By D. Gershgorn, Quartz. 2017

APE 2024

Training efficiency improvement

https://openai.com/research/ai-and-efficiency

Besides the improvement of hardware (Moore’s law), the amount of
compute needed to train a neural net has decreased by 2 every 16
months (thanks to better hyperparameter search, architectures
and training procedures).

