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Objectives

Understand what motivates the inspiration from
biological neural networks

Study the basic models of artificial neurons and
their functioning

Understand what does an artificial neuron do from
the mathematical point of view

Understand how does an artificial neuron “learn”
from fraining data
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von Neumann computer
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Connectionism: modeling of mental or behavioral
phenomena as emergent processes of interconnected
networks of simple units
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Connectionist systems

We ideally use a massively parallel architecture where each
computational element (neuron) performs a sort of a

correlation between inputs and stored values called synaptic
weights.

Paradigm shift: we replace programming by learning

Réseau de neurones

links = welghts

: 7
Lnputs output
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Synaptic
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Postsynaptic
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biological neuron
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The artificial neuron

McCulloch-Pitts (194€)
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IF (X, + X, + .. - X )2 O theny=1,elsey =0
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Threshold logic

We can interpret that excitatory inputs are weighted
by 1 and the inhibitory inputs are weighted by -1

if (x1 + x2) 2 2 theny =1, otherwise y = 0
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Rosenblatt’s Perceptron (1958)

Input
| synaptic weight
4

4 “ Activation
x1

W | function output

9,

X2 \\"_-‘ N | y
weighted __—— : | . -y

inpu’rs wn

threshold

X1

If (WX, + Wy X, + .. + W, X,) 20 theny =1, otherwise y = -1

If 2 wx; 2 © theny =1, otherwise y = -1
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NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo!

of Computer Designed to
ZOXZO ] ' Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer

today that it expects will be
, W able to walk, talk, see, write,
. ' reproduce itself and be  con-

scious of its existence,
The embryo—the Weather
Bureau's $2,000,000 704" com-
puter—learned to differentiate
between right and left after
~ . ) fifty aftempts in the Navy's
fixed weights adaptive weights demonstration for newsmen.,
= The service said it would use
this principle to build the first

linearly separable e e o
. - - » in e
smart preprocessing problem and write, It is expected to be
finished in about a year at a
ract of S100.000.

The New York Times, July 8 1958
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What a Perceptron can do ?
geometric interpretation

The activation function is discontinuous, what happens when the
sum of weighted inputs equals the threshold ?

A

2 WiXi= 0

- . -

®

2D case: W;X; + W, X, = ©, therefore x, = -(w;/w,) X, + © /w,

" linear separation of

the input space




. “T_hé F_>e}c_e§tr_o;| és_a_p;tie;n_
classifier

A Perceptron is capable of linearly separating the space into two
distinct regions. In 2D the separation is a line, in 3D it is a plane
and in n-dimensions it is a hyperplane

]
—u

Learning problem: in a classification problem, it consists on finding
the weights and threshold values fo correctly separate blue from

HE" red data points
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Bias: a learnable threshold of activation

We would like to get rid of the threshold

/z@

. g > mm :

\ bias
If 2 wx 2 0O theny =1,
otherwise y = 0 Lets introduce Wo = -0 :

or
If 2 wx,- 020 theny =1,
otherwise y = O

If 2 wx,+ wy2 0 theny =1,
otherwise y = O

Wo is called a “bias” and can be seen as an extra weight that can
be learned using a learning algorithm
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Perceptron learning algorithm

1. Randomly initialize weights
2. Compute the neurons output y for a given input vector x
y = 2jWiX;

3. Update weights: W,(t+1) = W,(t) + n(d-y)x //so-called delta
rule

d is the desired output and 7 is the learning rate, 0.0 < n < 1.0

4. Repeat 2 and 3 for a given number of steps or until the error
is smaller than a given threshold, i.e., error < 1/2 3, (yp-dp)?
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Learning in action (weight updating)

1) No classification error 2) Error correction after a weight update
y=0

e |
e n
sl

; L]

W
W(t+1) = Wi(t) + n(d-y)x |
d=y, so Wj(t+1) = W;(t) Wit+1) = WD) + nid-y)x

’

’

N |
O | optimal
e separation
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Gradient descent
Widrow-Hoff algorithm / Delta rule

The activation function of the Perceptron has a discontinuity, thus it is not
derivable at that point. By using a linear activation function, Widrow and
Hoff introduced a new model called ADALINE or ADAptive LINear Element

X1 Wy I:
sz_ y=SWX,
/

) Wh

So, what is learning ? : the idea is to find the weights Wi that minimize
an error function E, such as this one:

E =1/2§‘yi - d, 2,y =ijxj
i=1 j

A way to do this exploits the first derivative of E with respect fo the weights.

HE "™ This method is called gradient descent, and dates back to Cauchy (1847).
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Gradient descent (2)

Widrow-Hoff algorithm / Delta rule

E = 1/2§Hyi -d, Ly = ijxj
=i j

VE =0E /ow = dE | dy: dy /dw
local ~ | VE = JE | W oE [dy=y—d

minima 9
ay/low; =— E WX, =X,

€—

Aw, =-VE =n(d - y)x,
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Generalized Delta rule

Sigmoid activation function

1
y; = o= Y
L R : E

ij =77(d—)’)yj'xj
yj'=yj(1_yj)

The tanh and RelLu are other widely used activation functions
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import numpy as np

# sigmoid function and derivative
def sigmoid(neta):
output =1/ (1 + np.exp(-neta))
d_output = output * (1 - output)
return (output, d_output)

# input dataset
X =np.array([ [0.2,0.2],

[0.8,0.9]])

# output classes

y = np.array([[0,0,0,0, 1,1,11]).T

# seed random numbers to make calculation
# deterministic (just a good practice)
np.random.seed(1)

# initialize weights randomly with mean O
weights = np.random.normal(size=2)
bias = np.random.normal(size=1)
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inputs = X
target =y

for iter in xrange(100):
# forward propagation
neta = np.dot(inputs, weights) + bias

output, d_output = sigmoid(neta)

# how much did we miss?
error = target - output

# learning rate
alpha = 0.1

d_w_x = alpha * error * d_output * inputs[:,0]
d_w_y = alpha * error * d_output * inputs[:,1]

d_b = alpha * error * d_output

# update weights

weights += np.array([np.sum(d_w_x), np.sum(d_w_y)])

bias += np.sum(d_b)

print "Network After Training:"
print weights, bias




Activation functions (1)

Activation f... | Linear
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Activation f... | Sigmoid
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Activation functions (2)
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\

‘ tanh (ZWiX))

outp ut

Weight x1:
Weight x2:

Bias:

A two-class classifier example (1)
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A two-class classifier example (2)

Weight x1: O 0.50
m+]

Weight x2: O -0.50
m-1

Bias: O 0.5

Activation f... | Hyperbolic tangent

ou’cpu’c = -04c R

output =0.c20

owcpwc ===
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A two-class classifier example (3)

Weight x1: O 0.50
Weight x2: O -0.50

Bias: O 0.5

Activation f... | Hyperbolic tangent

l tanh (ZWX)

oud:p ut

m>0
m <0
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Two-class classification threshold

O A threshold has to be fixed by the engineer

O If we have a validation dataset, we can evaluate
the effect of such a threshold and decide the
best value

O In general, there is a frade-off between the
true positive rate (sensitivity) and the false
positive rate (1 - specificity) of such classifier.
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A linearly separable three-class
problem
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0O It is not possible to draw a line to separate these
two classes, e.g., red points from blue points.
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Definition == A type of artificial neuron
Input values

Weights

Components

Perceptron Bias
Activation function
Computes a weighted sum
Functionality —<
Applies activation function

Definition === A gradient descent learning rule
Purpose === To minimize the error in predictions

Perceptron
~— Delta Rule

Calculates the error between predicted and actual

outputs
Process P
Adjusts weights to reduce error
Learning Rate == Determines the size of weight adjustments
Sigmoid, Tanh
Activation Functions —<
RelU
Associated Concepts
Error Calculation === Mean Squared Error (MSE)

Weight Update == Based on the derivative of the error function

Convergence === The process of reaching a stable state of weights
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