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Objectives
Understand what motivates the inspiration from 
biological neural networks


Study the basic models of artificial neurons and 
their functioning 


Understand what does an artificial neuron do from 
the mathematical point of view


Understand how does an artificial neuron “learn” 
from training data 
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vs

von Neumann computer Brain

processor Complex

High frequency (GHz)

one or several (cores)

Simple (neuron)

low frequency (Hz)

Many!

memory Separated from the 
processor

Address-based access

Integrated to 
computing (distributed)

Content-addressable

computing centralized

sequential

Programmable

Distributed

Parallel

Learning

reliability Highly vulnerable Very robust



APE 2025

Connectionism: modeling of mental or behavioral 
phenomena as emergent processes of interconnected 
networks of simple units 



APE 2025

Connectionist systems

 We ideally use a massively parallel architecture where each 
computational element (neuron) performs a sort of a 
correlation between inputs and stored values called synaptic 
weights. 


  Paradigm shift: we replace programming by learning 

inputs output

links ≡ weights
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The artificial neuron

IF (x1 + x2 + … - xn) ≥ Θ then y = 1, else y = 0

inhibitory inputexcitatory input binary

output

MCulloch-Pitts (1948)

biological neuron
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Threshold logic
We can interpret that excitatory inputs are weighted 

by 1 and the inhibitory inputs are weighted by -1 

if (x1 + x2) ≥ 2 then y = 1, otherwise y = 0
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Rosenblatt’s Perceptron (1958)

If (w1x1 + w2 x2 + … + wn xn) ≥ Θ then y = 1, otherwise y = -1


If ∑ wixi ≥ Θ then y = 1, otherwise y = -1

weighted

inputs

Activation 
function
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Perceptron

20x20
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What a Perceptron can do ? 
geometric interpretation 

The activation function is discontinuous, what happens when the 
sum of weighted inputs equals the threshold ?

2D case: w1x1 + w2 x2 = Θ, therefore x2 = -(w1/w2) x1 + Θ/w2 

X1

X2

w1

w2

>Θ y

y=0 : 
y=1 :

linear separation of 
the input space
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The Perceptron as a pattern 
classifier

A Perceptron is capable of linearly separating the space into two 
distinct regions. In 2D the separation is a line, in 3D it is a plane 
and in n-dimensions it is a hyperplane 

Learning problem: in a classification problem, it consists on finding 
the weights and threshold values to correctly separate blue from 
red data points
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Bias: a learnable threshold of activation 

X1

X2

Xn

w1w2

wn

>Θ y

We would like to get rid of the threshold 

X1

X2

Xn
1

w1w2

wn wo

y

bias
If ∑ wixi ≥ Θ then y = 1, 

otherwise y = 0


or
If ∑ wixi - Θ ≥ 0 then y = 1, 

otherwise y = 0

Let’s introduce Wo = -Θ : 

If ∑ wixi + w0 ≥ 0 then y = 1, 
otherwise y = 0

Wo is called a “bias” and can be seen as an extra weight that can 
be learned using a learning algorithm 
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Biasing the output for zero inputs

x1

x2

x1

x2

w1

w2

output

bias < 0
+1 
0

> 0 ?

x1

x2

x1

x2

w1

w2

output

bias = 0
+1 
0

> 0 ?
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Perceptron learning algorithm

1. Randomly initialize weights


2. Compute the neuron’s output y for a given input vector x


y = ∑jwjxj


3. Update weights: Wj(t+1) = Wj(t) + η(d-y)x  //so-called delta 
rule


 d is the desired output and η is the learning rate, 0.0 < η < 1.0 


4. Repeat 2 and 3 for a given number of steps or until the error 
is smaller than a given threshold, i.e., error < 1/2 ∑p (yp-dp)2
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Learning in action (weight updating)

optimal 
separation

x

w

x

w ∆w
w

Wj(t+1) = Wj(t) + η(d-y)x 
d=y, so Wj(t+1) = Wj(t)

y=1
y=0

Wj(t+1) = Wj(t) + η(d-y)x

1) No classification error 2) Error correction after a weight update
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Gradient descent 
Widrow-Hoff algorithm / Delta rule

€ 

E =1/2 yi − di
2

i=1

p

∑ ,y = w j x j
j
∑

∇E = ∂E /∂w = ∂E /∂y⋅ ∂y /∂w
∂E /∂y= y − d

∂y /∂w j =
∂
∂w j

w j x j
j
∑ = x j

Δw j = −∇E =η(d − y)x j

X1

X2

w1
w2

wn

y=Σwixi

Xn

The activation function of the Perceptron has a discontinuity, thus it is not 
derivable at that point. By using a linear activation function, Widrow and 
Hoff introduced a new model called ADALINE or ADAptive LINear Element

So, what is learning ? : the idea is to find the weights Wi that minimize 
an error function E, such as this one:

A way to do this exploits the first derivative of E with respect to the weights. 
This method is called gradient descent, and dates back to Cauchy (1847).
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Gradient descent (2) 
Widrow-Hoff algorithm / Delta rule

Error

W€ 

∇E = ∂E /∂W

€ 

E =1/2 yi − di
2

i=1

p

∑ ,y = w j x j
j
∑

∇E = ∂E /∂w = ∂E /∂y⋅ ∂y /∂w
∂E /∂y= y − d

∂y /∂w j =
∂
∂w j

w j x j
j
∑ = x j

Δw j = −∇E =η(d − y)x j

Set of weights minimizing the error

local 
minima

Wj

∆W

€ 

−∇E
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Generalized Delta rule

Sj

yj

X1

X2

Xn

w1w2

wn

yj

Sigmoid activation function

The tanh and ReLu are other widely used activation functions€ 

y j =
1

1+ e−S j
, S j = wixi∑

Δw j =η(d − y)y j ' x j

y j '= y j (1− y j )
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import numpy as np 

# sigmoid function and derivative 
def sigmoid(neta): 
    output = 1 / (1 + np.exp(-neta)) 
    d_output = output * (1 - output) 
    return (output, d_output) 

# input dataset 
X = np.array([  [0.2,0.2], 
                       [0.2,0.5], 
                         ……. 
                       [0.8,0.7], 
                       [0.8,0.9] ]) 
     
# output classes          
y = np.array([[0,0,0,0, …… 1,1,1,1]]).T 

# seed random numbers to make calculation 
# deterministic (just a good practice) 
np.random.seed(1) 

# initialize weights randomly with mean 0 
weights = np.random.normal(size=2) 
bias = np.random.normal(size=1)

inputs = X 
target = y 

for iter in xrange(100): 

    # forward propagation 
    neta = np.dot(inputs, weights) + bias 
    output, d_output = sigmoid(neta) 

    # how much did we miss? 
    error = target - output 
                               
    # learning rate                            
    alpha = 0.1 
                                              
    d_w_x = alpha * error * d_output * inputs[:,0] 
    d_w_y = alpha * error * d_output * inputs[:,1] 
    d_b = alpha * error * d_output 
                  
    # update weights 
    weights += np.array([np.sum(d_w_x), np.sum(d_w_y)]) 
    bias += np.sum(d_b) 
                         
print "Network After Training:" 
print weights, bias
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Activation functions (1)
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Activation functions (2)
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A two-class classifier example (1)

output

x1

x2

w1

w2

tanh(Σwixi)

output

bias
+1 
-1
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output

A two-class classifier example (2)

output = -0.46

+1 
-1

output = ~1

output = 0.63

?

output = 0.25
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output

A two-class classifier example (3)

x1

x2

w1

w2

tanh(Σwixi)

output

bias
>0 
<0
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Two-class classification threshold

A threshold has to be fixed by the engineer

If we have a validation dataset, we can evaluate 
the effect of such a threshold and decide the 
best value

In general, there is a trade-off between the 
true positive rate (sensitivity) and the false 
positive rate (1 - specificity) of such classifier.
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A linearly separable three-class 
problem

X2

X1

X1

X2

y1

y2
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Non-linearly separable classes

It is not possible to draw a line to separate these 
two classes, e.g., red points from blue points.
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