
2. PERCEPTRONS
Stephan Robert-Nicoud

HEIG-VD/HES-SO

APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

APE 2025

Objectives
Understand what motivates the inspiration from
biological neural networks

Study the basic models of artificial neurons and
their functioning

Understand what does an artificial neuron do from
the mathematical point of view

Understand how does an artificial neuron “learn”
from training data

APE 2025

vs

von Neumann computer Brain

processor Complex

High frequency (GHz)

one or several (cores)

Simple (neuron)

low frequency (Hz)

Many!

memory Separated from the
processor

Address-based access

Integrated to
computing (distributed)

Content-addressable

computing centralized

sequential

Programmable

Distributed

Parallel

Learning

reliability Highly vulnerable Very robust

APE 2025

Connectionism: modeling of mental or behavioral
phenomena as emergent processes of interconnected
networks of simple units

APE 2025

Connectionist systems

 We ideally use a massively parallel architecture where each
computational element (neuron) performs a sort of a
correlation between inputs and stored values called synaptic
weights.

 Paradigm shift: we replace programming by learning

inputs output

links ≡ weights

APE 2025

The artificial neuron

IF (x1 + x2 + … - xn) ≥ Θ then y = 1, else y = 0

inhibitory inputexcitatory input binary

output

MCulloch-Pitts (1948)

biological neuron

APE 2025

Threshold logic
We can interpret that excitatory inputs are weighted

by 1 and the inhibitory inputs are weighted by -1

if (x1 + x2) ≥ 2 then y = 1, otherwise y = 0

APE 2025

Rosenblatt’s Perceptron (1958)

If (w1x1 + w2 x2 + … + wn xn) ≥ Θ then y = 1, otherwise y = -1

If ∑ wixi ≥ Θ then y = 1, otherwise y = -1

weighted

inputs

Activation
function

APE 2025

Perceptron

20x20

APE 2025

What a Perceptron can do ?
geometric interpretation

The activation function is discontinuous, what happens when the
sum of weighted inputs equals the threshold ?

2D case: w1x1 + w2 x2 = Θ, therefore x2 = -(w1/w2) x1 + Θ/w2

X1

X2

w1

w2

>Θ y

y=0 :
y=1 :

linear separation of
the input space

APE 2025

The Perceptron as a pattern
classifier

A Perceptron is capable of linearly separating the space into two
distinct regions. In 2D the separation is a line, in 3D it is a plane
and in n-dimensions it is a hyperplane

Learning problem: in a classification problem, it consists on finding
the weights and threshold values to correctly separate blue from
red data points

APE 2025

Bias: a learnable threshold of activation

X1

X2

Xn

w1w2

wn

>Θ y

We would like to get rid of the threshold

X1

X2

Xn
1

w1w2

wn wo

y

bias
If ∑ wixi ≥ Θ then y = 1,

otherwise y = 0

or
If ∑ wixi - Θ ≥ 0 then y = 1,

otherwise y = 0

Let’s introduce Wo = -Θ :

If ∑ wixi + w0 ≥ 0 then y = 1,
otherwise y = 0

Wo is called a “bias” and can be seen as an extra weight that can
be learned using a learning algorithm

APE 2025

Biasing the output for zero inputs

x1

x2

x1

x2

w1

w2

output

bias < 0
+1
0

> 0 ?

x1

x2

x1

x2

w1

w2

output

bias = 0
+1
0

> 0 ?

APE 2025

Perceptron learning algorithm

1. Randomly initialize weights

2. Compute the neuron’s output y for a given input vector x

y = ∑jwjxj

3. Update weights: Wj(t+1) = Wj(t) + η(d-y)x //so-called delta
rule

 d is the desired output and η is the learning rate, 0.0 < η < 1.0

4. Repeat 2 and 3 for a given number of steps or until the error
is smaller than a given threshold, i.e., error < 1/2 ∑p (yp-dp)2

APE 2025

Learning in action (weight updating)

optimal
separation

x

w

x

w ∆w
w

Wj(t+1) = Wj(t) + η(d-y)x
d=y, so Wj(t+1) = Wj(t)

y=1
y=0

Wj(t+1) = Wj(t) + η(d-y)x

1) No classification error 2) Error correction after a weight update

APE 2025

Gradient descent 
Widrow-Hoff algorithm / Delta rule

€

E =1/2 yi − di
2

i=1

p

∑ ,y = w j x j
j
∑

∇E = ∂E /∂w = ∂E /∂y⋅ ∂y /∂w
∂E /∂y= y − d

∂y /∂w j =
∂
∂w j

w j x j
j
∑ = x j

Δw j = −∇E =η(d − y)x j

X1

X2

w1
w2

wn

y=Σwixi

Xn

The activation function of the Perceptron has a discontinuity, thus it is not
derivable at that point. By using a linear activation function, Widrow and
Hoff introduced a new model called ADALINE or ADAptive LINear Element

So, what is learning ? : the idea is to find the weights Wi that minimize
an error function E, such as this one:

A way to do this exploits the first derivative of E with respect to the weights.
This method is called gradient descent, and dates back to Cauchy (1847).

APE 2025

Gradient descent (2) 
Widrow-Hoff algorithm / Delta rule

Error

W€

∇E = ∂E /∂W

€

E =1/2 yi − di
2

i=1

p

∑ ,y = w j x j
j
∑

∇E = ∂E /∂w = ∂E /∂y⋅ ∂y /∂w
∂E /∂y= y − d

∂y /∂w j =
∂
∂w j

w j x j
j
∑ = x j

Δw j = −∇E =η(d − y)x j

Set of weights minimizing the error

local
minima

Wj

∆W

€

−∇E

APE 2025

Generalized Delta rule

Sj

yj

X1

X2

Xn

w1w2

wn

yj

Sigmoid activation function

The tanh and ReLu are other widely used activation functions€

y j =
1

1+ e−S j
, S j = wixi∑

Δw j =η(d − y)y j ' x j

y j '= y j (1− y j)

APE 2025

import numpy as np

sigmoid function and derivative
def sigmoid(neta):
 output = 1 / (1 + np.exp(-neta))
 d_output = output * (1 - output)
 return (output, d_output)

input dataset
X = np.array([[0.2,0.2],
 [0.2,0.5],
 …….
 [0.8,0.7],
 [0.8,0.9]])

output classes
y = np.array([[0,0,0,0, …… 1,1,1,1]]).T

seed random numbers to make calculation
deterministic (just a good practice)
np.random.seed(1)

initialize weights randomly with mean 0
weights = np.random.normal(size=2)
bias = np.random.normal(size=1)

inputs = X
target = y

for iter in xrange(100):

 # forward propagation
 neta = np.dot(inputs, weights) + bias
 output, d_output = sigmoid(neta)

 # how much did we miss?
 error = target - output

 # learning rate
 alpha = 0.1

 d_w_x = alpha * error * d_output * inputs[:,0]
 d_w_y = alpha * error * d_output * inputs[:,1]
 d_b = alpha * error * d_output

 # update weights
 weights += np.array([np.sum(d_w_x), np.sum(d_w_y)])
 bias += np.sum(d_b)

print "Network After Training:"
print weights, bias

APE 2025

Activation functions (1)

L
in

ea
r

si
g

m
oi

d

ta
n

h

+∞

-∞

1

0

+1

-1

X1

X2

w1
w2

wnXnXn

f(Σwixi)
output

APE 2025

Activation functions (2)

APE 2025

A two-class classifier example (1)

output

x1

x2

w1

w2

tanh(Σwixi)

output

bias
+1
-1

APE 2025

output

A two-class classifier example (2)

output = -0.46

+1
-1

output = ~1

output = 0.63

?

output = 0.25

APE 2025

output

A two-class classifier example (3)

x1

x2

w1

w2

tanh(Σwixi)

output

bias
>0
<0

APE 2025

Two-class classification threshold

A threshold has to be fixed by the engineer

If we have a validation dataset, we can evaluate
the effect of such a threshold and decide the
best value

In general, there is a trade-off between the
true positive rate (sensitivity) and the false
positive rate (1 - specificity) of such classifier.

APE 2025

A linearly separable three-class
problem

X2

X1

X1

X2

y1

y2

APE 2025

Non-linearly separable classes

It is not possible to draw a line to separate these
two classes, e.g., red points from blue points.

APE 2025

