— —— T - S— e D — — — — s T— T e S—_— TS S— E— — S

2. PERCEPTRONS

Stephan Robert-Nicoud
HEIG-VD/HES-SO

@ APPRENTISSAGE PAR RESEAUX DE NEURONES ARTIFICIELS

Objectives

Understand what motivates the inspiration from
biological neural networks

Study the basic models of artificial neurons and
their functioning

Understand what does an artificial neuron do from
the mathematical point of view

Understand how does an artificial neuron “learn”
from fraining data

APE 2025

von Neumann computer

processor

Complex

High frequency (GHz)

one or several (cores)

Simple (neuron)
low frequency (Hz)
Many!

memory

Separated from the
processor

Address-based access

Integrated tfo
computing (distributed)

Content-addressable

computing

centralized
sequential
Programmable

Distributed
Parallel
Learning

reliability

Highly vulnerable

Very robust

APE 2025

Connectionism: modeling of mental or behavioral
phenomena as emergent processes of interconnected
networks of simple units

APE 2025

Connectionist systems

We ideally use a massively parallel architecture where each
computational element (neuron) performs a sort of a

correlation between inputs and stored values called synaptic
weights.

Paradigm shift: we replace programming by learning

Réseau de neurones

links = welghts

: 7
Lnputs output

APE 2025

Dendrite Nucleus

Synaptic
vesicle

Postsynaptic
dendrite

i Neurotransmitters \
biological neuron

excitatory input inhibitory input

The artificial neuron

McCulloch-Pitts (194€)

AXxon

Synapse

Presynaptic

N
axon terminal S

binary
output

IF (X, + X, + .. - X)2 O theny=1,elsey =0

APE 2025

Threshold logic

We can interpret that excitatory inputs are weighted
by 1 and the inhibitory inputs are weighted by -1

if (x1 + x2) 2 2 theny =1, otherwise y = 0

APE 2025

Rosenblatt’s Perceptron (1958)

Input
| synaptic weight
4

4 “ Activation
x1

W | function output

9,

X2 \\"_-‘ N | y
weighted __—— : | . -y

inpu’rs wn

threshold

X1

If (WX, + Wy X, + .. + W, X,) 20 theny =1, otherwise y = -1

If 2 wx; 2 © theny =1, otherwise y = -1

APE 2025

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo!

of Computer Designed to
ZOXZO] ' Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer

today that it expects will be
, W able to walk, talk, see, write,
. ' reproduce itself and be con-

scious of its existence,
The embryo—the Weather
Bureau's $2,000,000 704" com-
puter—learned to differentiate
between right and left after
~ .) fifty aftempts in the Navy's
fixed weights adaptive weights demonstration for newsmen.,
= The service said it would use
this principle to build the first

linearly separable e e o
. - - » in e
smart preprocessing problem and write, It is expected to be
finished in about a year at a
ract of S100.000.

The New York Times, July 8 1958

APE 2025

What a Perceptron can do ?
geometric interpretation

The activation function is discontinuous, what happens when the
sum of weighted inputs equals the threshold ?

A

2 WiXi= 0

- . -

®

2D case: W;X; + W, X, = ©, therefore x, = -(w;/w,) X, + © /w,

" linear separation of

the input space

. “T_hé F_>e}c_e§tr_o;| és_a_p;tie;n_
classifier

A Perceptron is capable of linearly separating the space into two
distinct regions. In 2D the separation is a line, in 3D it is a plane
and in n-dimensions it is a hyperplane

]
—u

Learning problem: in a classification problem, it consists on finding
the weights and threshold values fo correctly separate blue from

HE" red data points
IG APE 2025

Bias: a learnable threshold of activation

We would like to get rid of the threshold

/z@

. g > mm :

\ bias
If 2 wx 2 0O theny =1,
otherwise y = 0 Lets introduce Wo = -0 :

or
If 2 wx,- 020 theny =1,
otherwise y = O

If 2 wx,+ wy2 0 theny =1,
otherwise y = O

Wo is called a “bias” and can be seen as an extra weight that can
be learned using a learning algorithm

APE 2025

X1 w,

/7
X2y,

bias < 0

X2
N ..
" .
I :l
=

N
Cdd

X1

APE 2025

Perceptron learning algorithm

1. Randomly initialize weights
2. Compute the neurons output y for a given input vector x
y = 2jWiX;

3. Update weights: W,(t+1) = W,(t) + n(d-y)x //so-called delta
rule

d is the desired output and 7 is the learning rate, 0.0 < n < 1.0

4. Repeat 2 and 3 for a given number of steps or until the error
is smaller than a given threshold, i.e., error < 1/2 3, (yp-dp)?

APE 2025

Learning in action (weight updating)

1) No classification error 2) Error correction after a weight update
y=0

e |
e n
sl

; L]

W
W(t+1) = Wi(t) + n(d-y)x |
d=y, so Wj(t+1) = W;(t) Wit+1) = WD) + nid-y)x

’

’

N |
O | optimal
e separation

APE 2025

Gradient descent
Widrow-Hoff algorithm / Delta rule

The activation function of the Perceptron has a discontinuity, thus it is not
derivable at that point. By using a linear activation function, Widrow and
Hoff introduced a new model called ADALINE or ADAptive LINear Element

X1 Wy I:
sz_ y=SWX,
/

) Wh

So, what is learning ? : the idea is to find the weights Wi that minimize
an error function E, such as this one:

E =1/2§‘yi - d, 2,y =ijxj
i=1 j

A way to do this exploits the first derivative of E with respect fo the weights.

HE "™ This method is called gradient descent, and dates back to Cauchy (1847).
IG APE 2025

Gradient descent (2)

Widrow-Hoff algorithm / Delta rule

E = 1/2§Hyi -d, Ly = ijxj
=i j

VE =0E /ow = dE | dy: dy /dw
local ~ | VE = JE | W oE [dy=y—d

minima 9
ay/low; =— E WX, =X,

€—

Aw, =-VE =n(d - y)x,

APE 2025

Generalized Delta rule

Sigmoid activation function

1
y; = o= Y
L R : E

ij =77(d—)’)yj'xj
yj'=yj(1_yj)

The tanh and RelLu are other widely used activation functions

APE 2025

import numpy as np

sigmoid function and derivative
def sigmoid(neta):
output =1/ (1 + np.exp(-neta))
d_output = output * (1 - output)
return (output, d_output)

input dataset
X =np.array([[0.2,0.2],

[0.8,0.9]])

output classes

y = np.array([[0,0,0,0, 1,1,11]).T

seed random numbers to make calculation
deterministic (just a good practice)
np.random.seed(1)

initialize weights randomly with mean O
weights = np.random.normal(size=2)
bias = np.random.normal(size=1)

APE 2025

inputs = X
target =y

for iter in xrange(100):
forward propagation
neta = np.dot(inputs, weights) + bias

output, d_output = sigmoid(neta)

how much did we miss?
error = target - output

learning rate
alpha = 0.1

d_w_x = alpha * error * d_output * inputs[:,0]
d_w_y = alpha * error * d_output * inputs[:,1]

d_b = alpha * error * d_output

update weights

weights += np.array([np.sum(d_w_x), np.sum(d_w_y)])

bias += np.sum(d_b)

print "Network After Training:"
print weights, bias

Activation functions (1)

Activation f... | Linear

Weight)

(ZWiXi)
outpwc

Output value

- output
—— first derivative
7 00 25 50 75 100
Input value

Activation f... | Hyperbolic tangent

Activation f... | Sigmoid

foffafet

—— output
—— first derivative

Weight [)

Weight

Output value
Output value

—— output
—— first derivative

00 25 50 100] 25 00 25 50 75 100
Input value

Input value

APE 2025

Activation f... | Sigmoid

Weight @

Activation functions (2)

Activation f...

100

075

050

025

0.00

Output value

—— output
—— first derivative

-100 -75

Activation f... ‘ Hyperbolic tangent

00 25 50 75 100
Input value

Weight o

Output value

—— output
—— first derivative

00 25 50 75 100
Input value

Output value

Activation f...

Output value

Activation f...

Weight

100

075

050

025

0.00

Weight

Sigmoid

—— output
—— first derivative

00 25 50 75 100
Input value

Hyperbolic tangent

—— output
—— first derivative

00 25 50 75 100
Input value

APE 2025

Output value

Activation f...

Output value

Weight

Weight

100

—— output
—— first derivative

00 25 5.0 75 100

Input value

—— output
—— first derivative

00 25 50
Input value

75 100

\

‘ tanh (ZWiX))

outp ut

Weight x1:
Weight x2:

Bias:

A two-class classifier example (1)

0.50

-0.50

0.5

Activation f...

Hyperbolic tangent

-1.0

APE 2025

A two-class classifier example (2)

Weight x1: O 0.50
m+]

Weight x2: O -0.50
m-1

Bias: O 0.5

Activation f... | Hyperbolic tangent

ou’cpu’c = -04c R

output =0.c20

owcpwc ===

APE 2025

A two-class classifier example (3)

Weight x1: O 0.50
Weight x2: O -0.50

Bias: O 0.5

Activation f... | Hyperbolic tangent

l tanh (ZWX)

oud:p ut

m>0
m <0

APE 2025

Two-class classification threshold

O A threshold has to be fixed by the engineer

O If we have a validation dataset, we can evaluate
the effect of such a threshold and decide the
best value

O In general, there is a frade-off between the
true positive rate (sensitivity) and the false
positive rate (1 - specificity) of such classifier.

APE 2025

A linearly separable three-class
problem

APE 2025

0O It is not possible to draw a line to separate these
two classes, e.g., red points from blue points.

APE 2025

Definition == A type of artificial neuron
Input values

Weights

Components

Perceptron Bias
Activation function
Computes a weighted sum
Functionality —<
Applies activation function

Definition === A gradient descent learning rule
Purpose === To minimize the error in predictions

Perceptron
~— Delta Rule

Calculates the error between predicted and actual

outputs
Process P
Adjusts weights to reduce error
Learning Rate == Determines the size of weight adjustments
Sigmoid, Tanh
Activation Functions —<
RelU
Associated Concepts
Error Calculation === Mean Squared Error (MSE)

Weight Update == Based on the derivative of the error function

Convergence === The process of reaching a stable state of weights

APE 2025

