

1. MACHINE LEARNING REMINDER

Stephan Robert-Nicoud HEIG-VD/HES-SO

Credit: Andres Perez-Uribe

Objectives

- □ Remind what is Machine Learning and what are the types of problems we can deal with it
- □ Remind what are the main steps of a Machine Learning approach
- Setup the tools for processing data and building Machine Learning models

References

- □ Introduction à la science des données (ISD, 2021)
 - 1. Outils pour la modélisation data-driven
 - 2. Introduction à la science des données
 - 3. Apprentissage automatique (Machine Learning)
 - 4. Bibliothèques pour le calcul scientifique
 - 5. Analyse exploratoire des données
 - 6. Apprentissage supervisé
 - 7. Evaluation des modèles
 - 10. Données et caractéristiques

http://iict-space.heig-vd.ch/ape/teaching/

Machine learning concept

- □ What is Machine Learning?
 - learning from examples
 - □ software 2.0
- □ What are the three main learning paradigms?
 - supervised, unsupervised, reinforcement learning
- □ What are the two kinds of problems we try to solve with a ML algorithm using a supervised learning approach?
 - □ classification & regression

Machine learning methodology (1)

- □ What is the first step we have to do before start building a model?
 - Exploratory Data Analysis: filtering outliers, missing data, box plot analyses
- ☐ And then?
 - □ pre-processing (e.g., normalization)
 - feature engineering

Machine learning methodology (2)

- □ What is feature engineering?
 - □ transforming raw data to extract knowledge
- Please, give examples of features of data
 - sound -> FFT; text -> keyword frequency; image
 -> color histogram; heart beat (time-series) -> heart frequency

Machine learning methodology (3)

- □ What data is needed for training a model using a supervised learning approach?
 - □ input data and labels (desired outputs: classes or continuous values to predict)
- □ What are the steps in a supervised learning approach?
 - data collection -> pre-processing -> feature
 extraction -> model selection -> performance
 evaluation

Towards Artificial Neural Networks

Machine learning methodology (4)

- Consider a supervised learning classification task. What is the main capability that a ML model should exhibit?
 Hint: It is related to model selection
 - generalization
 - each ML algorithm is characterized by a series of parameters (e.g., number of neighbors in KNN; a learning rate in linear regression & LVQ, etc.
 - ☐ Model selection refers to identifying the right parameters of a model (we also speak of hyper-parameter tuning)

Machine learning methodology (5)

- □ What is the major risk we have when using a ML model with respect to its generalization capability?
 - overfitting or "learning by heart" -> bad generalization

Machine learning methodology (6)

☐ How do we perform model selection?

Generate train - validation - test datasets (independent sets)

loop /* model exploration or hyper-parameter tuning */

for different parameters train the model (using the train dataset) and evaluate its generalization (using the validation dataset) /* cross-validation */

end loop

final performance evaluation (using the test set)

Machine learning methodology (7)

- □ What are the performance measures we use for supervised classification?
 - accuracy
 - false positives; false negatives
 - positive predictive value (precision)
 - □ true positive rate (recall)
 - ☐ F-score
 - confusion matrix

Machine learning methodology (8)

- □ Why accuracy is not enough?
 - ☐ Consider an unbalanced dataset

Towards Artificial Neural Networks

Course contents

- ☐ The Perceptron
- ☐ Multi-layer Perceptrons and Backpropagation
- ☐ Application: mice sleep phases
- Convolutional Neural Networks (Deep Learning)
- ☐ Application: object recognition app
- ☐ Survey of state-of-the-art applications

