Télétrafic (TTR)

Laboratoire 3

Simulation de chaînes de Markov (2)

Novembre 2018

Simulation 1

Un virus peut se présenter sous forme de N souches différentes. A chaque génération, soit le virus reste à la même souche avec une probabilité p, soit une mutation a lieu et il change dans une des autres N-1 souches au hasard. Dessinez cette chaîne de Markov et sa matrice de transition ${\bf P}$. Pour le cas N=4 et p=1/3, calculer ${\bf P}$ et utiliser Matlab pour trouver ${\bf P}^5$ et la probabilité théorique que dans 5 générations le virus est le même qu'au début. Simuler ensuite l'évolution du virus sur 5 générations 100 fois et trouver la valeur calculée (observée) pour cette probabilité, et comparez-la avec la valeur théorique.

Simulation 2

Marie collectionne des jouets des œufs Kinder. Il y a au total 30 jouets à collectionner, tous également probables. On peut modéliser comme une chaîne Markov le nombre X_n de différents jouets accumulés après un achat de n œufs. Le nombre moyen d'œufs à acheter pour que tous les jouets soient trouvés correspond au temps moyen jusqu'à l'absorption par l'état $X_n=30$, dont la valeur théorique est $\mu=30\cdot\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{30}\right)$. Simuler cette situation 20 fois avec Matlab pour estimer le nombre moyen d'œufs que Marie doit acheter pour trouver tous les jouets et comparez-le avec la valeur théorique.