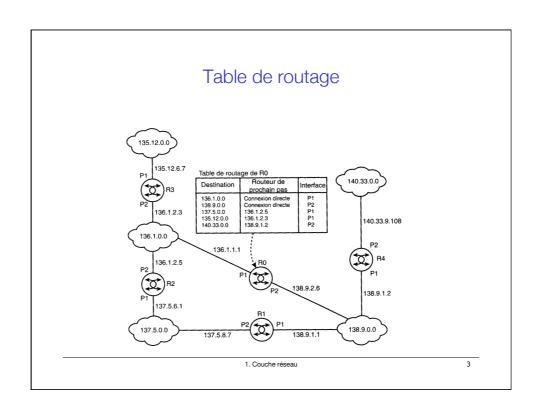


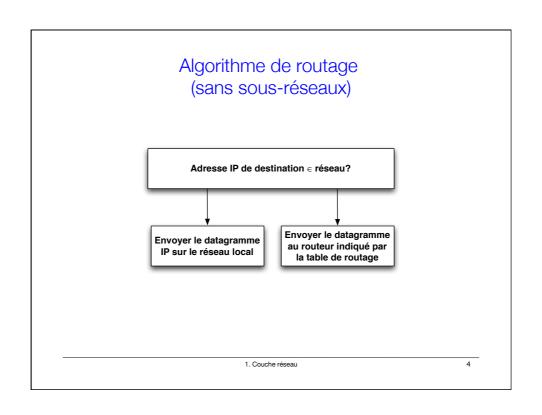
Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud

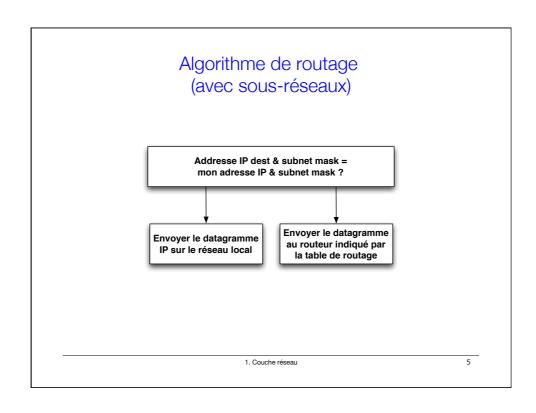
# Chapitre I

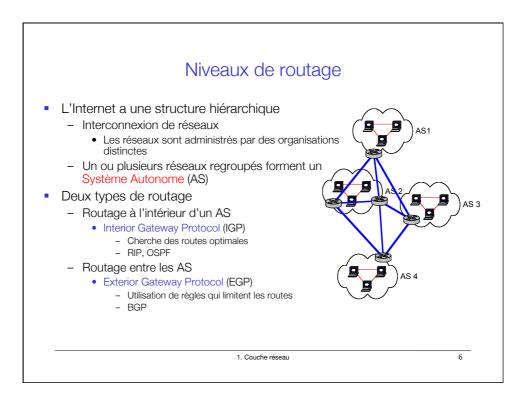
La couche réseau

1. Couche réseau


1


§ 5.2 Tutorial IBM + support + routage IP-Luc Saccavini


# Routage


- La fonction principale de la couche réseau est l'acheminement des datagrammes
  - Les routeurs utilisent des tables de routage pour déterminer le prochain saut
  - L'information dans les tables de routage vient
    - De protocoles de routage chargés de trouver des chemins 'optimaux'
    - D'un configuration statique par l'administrateur
- > IP
  - Forwarding de datagramme sur la base de tables de routage
- Protocoles de routage
  - Déterminer les chemins optimaux et créer les tables de routage

1. Couche réseau









# Algorithmes de routage

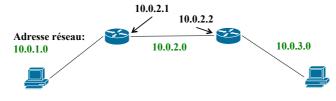
#### <u>Problème</u>

- Trouver la « meilleur route » vers une destination
- Métriques
  - Nombre de sauts, capacités de liens, trafic, délai
- Inondation (flooding)
  - Similaire au routage par la source dans Token Ring
- Chemin le plus court
  - Statique : topologie et métriques fixes
  - Dynamique : adaptation aux changements de la topologie
    - Vecteur de distance connaissance locale des métriques
      RIP, (IGRP)
    - État de liaison connaissance globale des métriques
      - OSPF, (PNNI)

1. Couche réseau

# Routage statique

- Configuré manuellement par l'administrateur de réseau.
- Les routeurs vont acheminer les paquets à des ports déterminés à partir des routes.
- Aucune communication entre routeurs
- Désavantages:
  - Coordination nécessaire, fastidieux pour des grands réseaux (>10 routeurs)
  - Aucune adaptation dynamique
  - Ne fonctionne que pour des topologies simples, pas possible de gérer des routes redondantes


# Routage statique (2)

- Quand utilise-t-on le routage statique?
  - Définir manuellement une route par défault (poste de travail)
  - Définir une route qui n'est pas donnée par les protocoles de routage
  - Quand nous voulons faire passer du trafic par certains endroits au sein d'une topologie complexe
  - Pour augmenter la sécurité du réseau en autorisant la communication spécifiquement entre certains sous-réseaux
  - Utilisation efficace des ressources (pas besoin d'utiliser de la LB pour les messages de routage)

1. Couche réseau

# Routage statique (3)

Exemple de routage statique



#### Commandes Cisco:

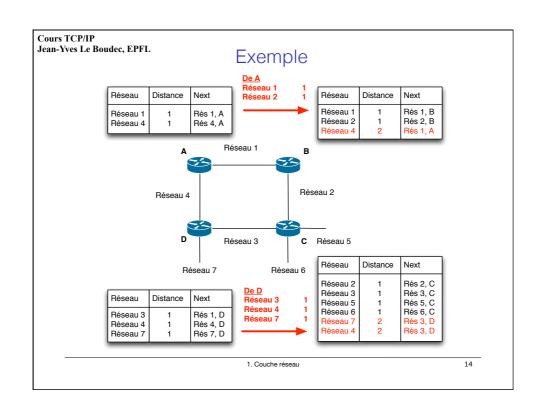
Routeur R1: >IP route 10.0.3.0 255.255.255.0 10.0.2.2 Routeur R2: >IP route 10.0.1.0 255.255.255.0 10.0.2.1

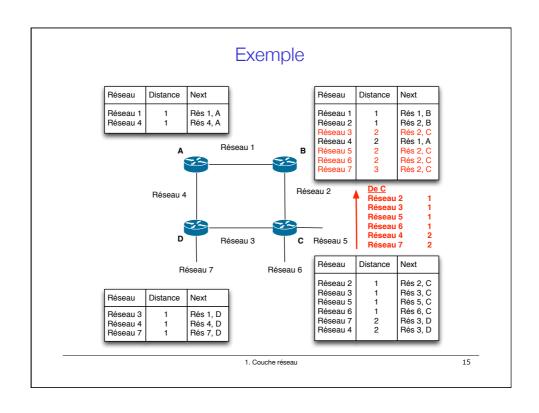
1. Couche réseau

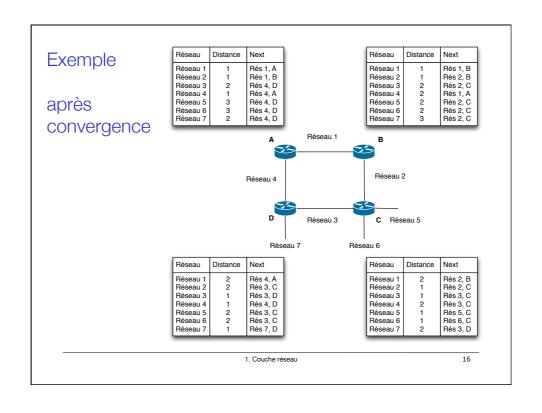
# Routage dynamique

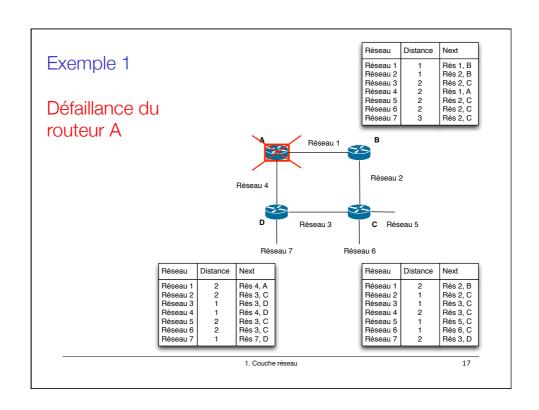
- Caractéristiques
  - Adaptatif (si des liaisons ou des routeurs lâchent)
  - Configuration relativement simple (peu dépendant du nombre de routeurs)
- Objectifs
  - Optimisation: meilleures routes
  - Elimination des boucles de routage
  - Consommation de largeur de bande faible (minimiser les messages échangés)
  - Convergence et reconfiguration rapide
  - Simplicité de configuration

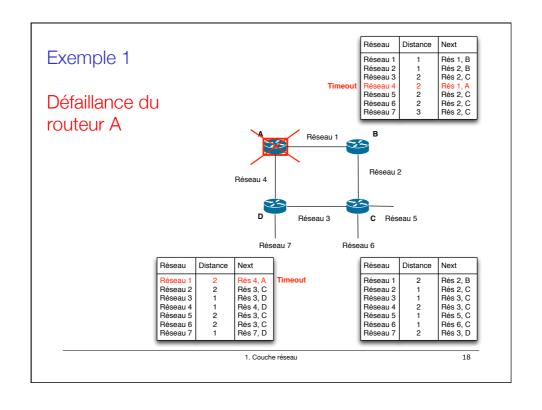
1. Couche réseau 11

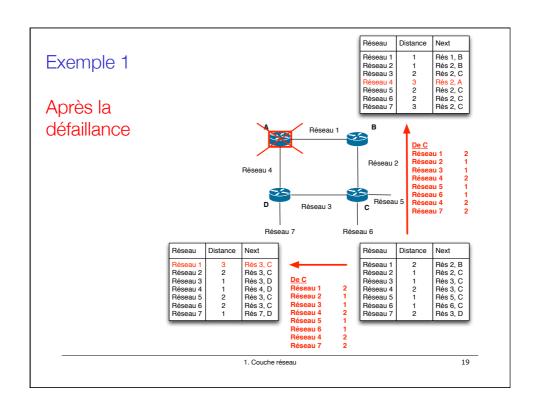

# Protocoles de routage dynamiques

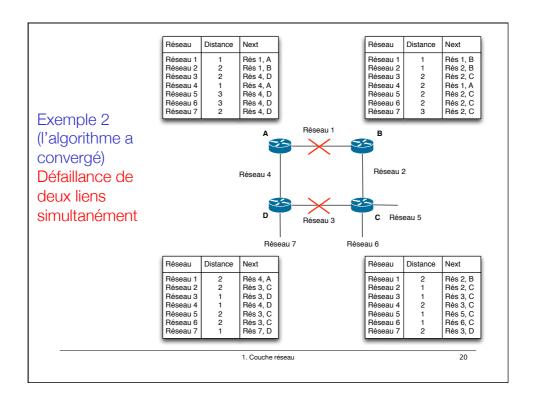

- Protocoles intérieurs (IGP)
  - A vecteur de distance: RIP, IGRP
  - A état de liens: OSPF, IS-IS
  - Une autorité d'administration, taille < 100 routeurs
- Protocoles extérieurs (EGP)
  - EGP, BGP
  - Valables sur tout le réseau Internet
  - Séparation en systèmes autonomes (AS)

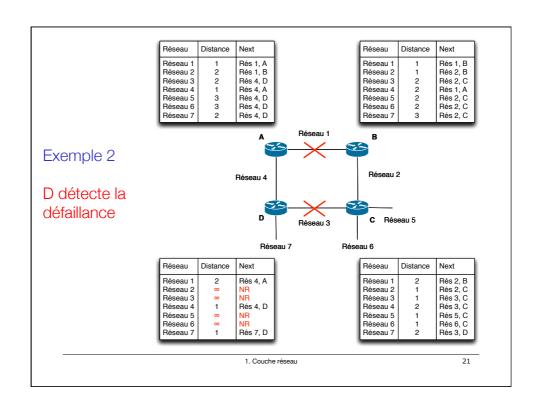

# Préambule: Routage dynamique à vecteur de distance, Bellman-Ford

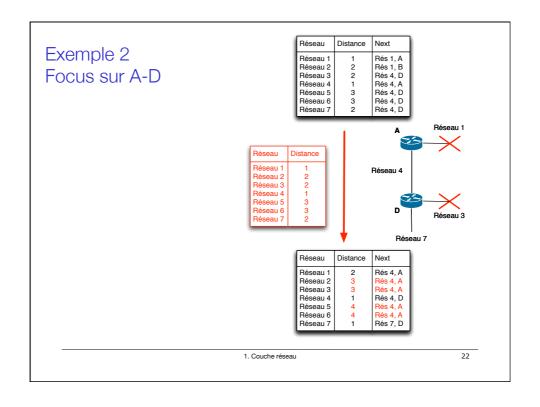

- Chaque routeur maintient une table de routage
  - Pour toutes les destinations : Destination, Nœud suivant, Distance
    - Distance: Nombre de sauts, délai, ...
    - Distance peut être infinie si aucune route n'est connue
- Le routeur connaît la distance qui le sépare de ses voisins directs
- Les mises à jour (updates) se font directement entre voisins
  - Les voisins échangent les routes connues
  - Périodiquement ou quand la table change (appelé "triggered update")
- Algorithme de Bellman-Ford distribué
  - Le routeur X connaît la distance d(X,Y) vers ses voisins Y
  - Initialement, la distance D(X,n) vers la destination n est
    - D(X,n) = 0, si X est directement connecté au réseau n
    - D(X,n) = ∞ pour toutes les autres destinations
  - Le routeur X reçoit le vecteur des distances {D(Y,n)} du voisin Y vers tous les n
  - Le routeur X calcule la meilleure distance vers la destination n

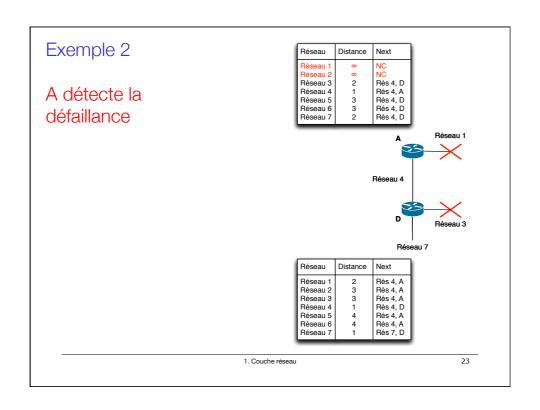

$$D(X,n) = \min_{\text{voisins Y}} \left( d(X,Y) + D(Y,n) \right)$$

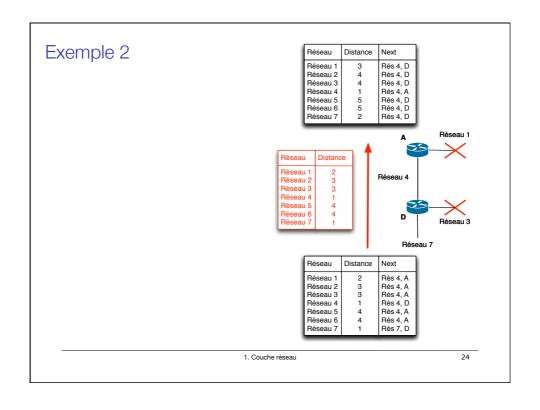


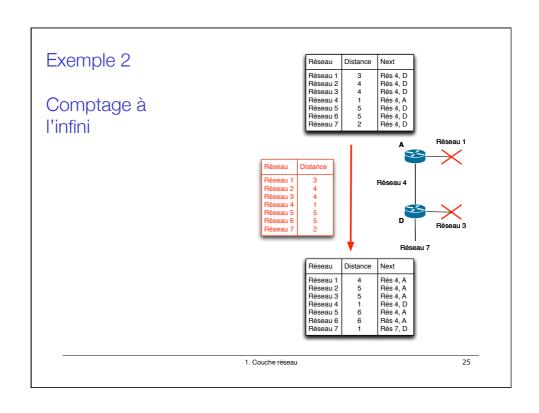



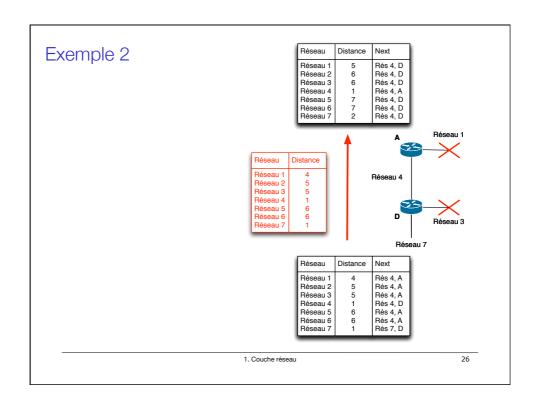



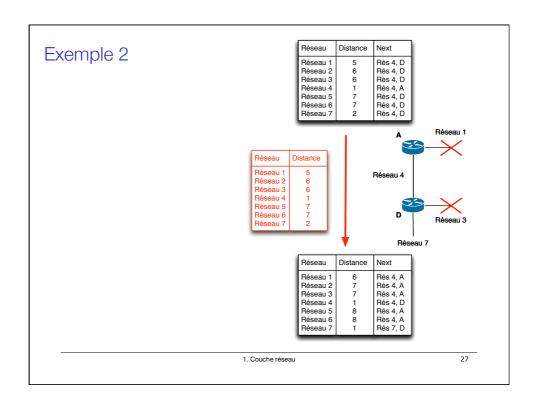



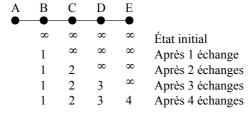





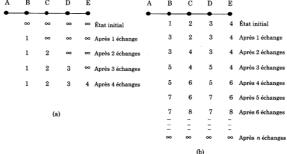







# Propagation des bonnes nouvelles sur un réseau linéaire


- Une meilleure route se propage rapidement
- Exemple simple :
  - Réseau linéaire (distance à des nœuds et pas des réseaux, pour simplifier)
  - Distance: nombre de sauts
  - Nœud A vient de démarrer



1. Couche réseau

# Propagation de mauvaises nouvelles

- Après une panne, le routage converge très lentement
- Exemple:
  - Lien entre A et B tombe en panne

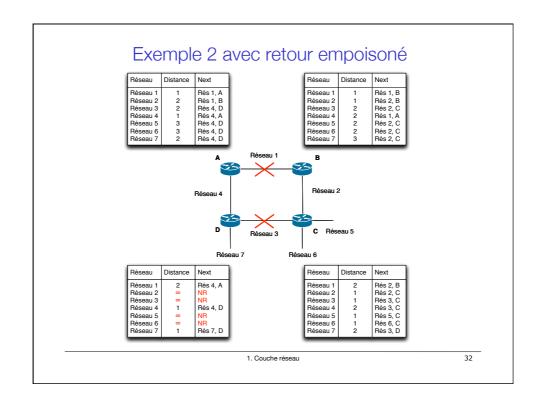


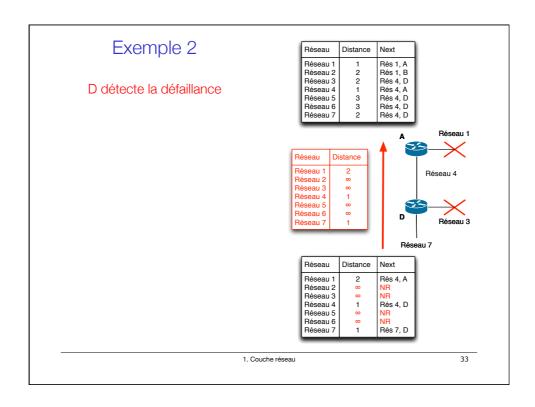
Probleme de la valeur infiliale

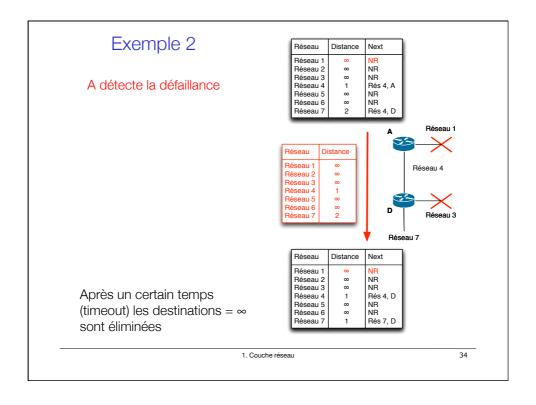
1. Couche réseau

29

# Leçons à tirer du deuxième exemple


- Le coût des réseaux 1,2,3,5,6 augmente sans limites (comptage à l'infini)
  - La vraie valeur des coûts est infinie
  - Ceci est un comportement attendu de l'algorithme (Bellman-Ford)
- Convergence vers un état stable si nous fixons
  - ∞= grand nombre (RIP: ∞= 16)
- La convergence reste très lente. Il faut prendre des mesures...


# Route poisoning et Split horizon


- Pratiquement
  - Il faut essayer d'éviter de compter jusqu'à l'infini
  - Il faut essayer d'éviter de faire du ping-pong dans des boucles
- Retour empoisoné (Route poisoning)
  - Si A détecte une route inaccessible vers X, il va envoyer
    « distance=∞ » à tous ses voisins
  - Lorsqu'une distance ∞ est reçue pour X, chaque mise à jour à propos de X est ignorée pendant un certain temps
- Horizon éclaté (Split horizon)
  - La distance vers une destination n'est pas annoncée au nœud suivant dans cette direction
    - Exemple
      - C annonce à D une distance D(C,A) = 2
      - C annonce à B une distance D(C,A) = ∞

A B C D E

1. Couche réseau







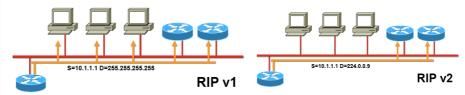
# Solutions pour accélérer la convergence

- Ne fonctionne pas toujours
  - Exemple:
    - Distance vers D
    - Lien C D tombe en panne



1. Couche réseau

35


#### Protocole RIP

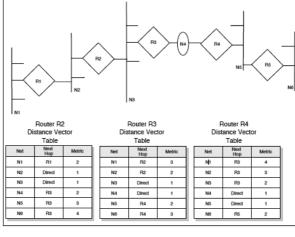
- RIP : Routing Information Protocol
  - Protocole de routage par vecteur de distance
  - Métrique: nombre de sauts (routeurs à traverser)
    - Valeur 'infinie': 16 sauts
    - Utilise l'horizon éclaté (métrique max: 15 pour les routes des voisins) ou le retour empoisonné (distance infinie pour les routes des voisins)
  - Temps de convergence: quelques minutes
  - Basé sur l'algorithme de Bellman-Ford pour sélectionner les meilleurs routes
- Encore utilisé dans de petits réseaux (<15 routeurs)</li>
  - Facile à configurer
- Version améliorée: RIP2

1. Couche réseau

### Historique et standardisation de RIP

- RIPv1: RFC 1058 (1988)
- RIPv2: RFC 1387, RFC 1388, RFC 1723 (1994)
  - Routage CIDR
  - VLSM and route summarization
  - Authentification des routeurs
  - Diffusion multicast plutôt que broadcast




RIPng (pour IPv6): RFC 2080, RFC 2453 (1998)

1. Couche réseau

37

# Exemple avec RIP

- Les routeurs envoient leurs tables de routage à leurs voisins
- Note: Next
  hop = R1
  signifie
  adresse IP
  de R1 »



Source: tutorial IBM

1. Couche réseau

# Paquets RIP

- Types de paquets envoyés
  - Requêtes RIP: paquets envoyés aux voisins pour leur demander leur table de routage (vecteur de distance)
  - Réponses RIP: paquets envoyés par un routeur pour annoncer les informations qu'il connaît (tout ou une partie de la table de routage)
    - Automatiquement envoyée toutes les 30 secondes
    - Ou envoyée suite à une requête d'un voisin

1. Couche réseau 39

### Format des paquets RIPv1

- Paquets UDP (port 520 pour IPv4 et 521 pour IPv6)
- Version: version de RIP (2 car 1 n'est plus utilisée)
- Famille Réseau: X'0002' pour IP
- Taille maximale: 512 octets (25 entrées).
   Sinon plusieurs paquets
- Distance au réseau: métrique, de 1 à 15.
- Route par défault: 0.0.0.0

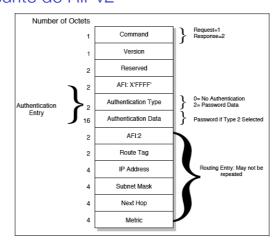
#### Format d'un paquet RIP

| Code (1-5)            | Version (1) | 00 |  |  |  |  |  |
|-----------------------|-------------|----|--|--|--|--|--|
| Famille Ré            | seau #1 (2) | 00 |  |  |  |  |  |
| Adresse IP Réseau #1  |             |    |  |  |  |  |  |
| 00                    |             |    |  |  |  |  |  |
| 00                    |             |    |  |  |  |  |  |
| Distance au Réseau #1 |             |    |  |  |  |  |  |
| Famille Ré            | seau #2 (2) | 00 |  |  |  |  |  |
| Adresse IP Réseau #2  |             |    |  |  |  |  |  |
| •                     |             |    |  |  |  |  |  |



Code = 1 : Requête d'information de routage Code = 2 : Réponse d'information de routage

1. Couche réseau


#### Minuteurs de RIP

- Routing-update
  - 30 secondes +/- 0 à 5 secondes
  - Période maximale entre deux annonces
- Route-timeout
  - 180 secondes
  - Durée de vie associée à chacune des routes apprises par RIP.
    Après ce temps la route est invalide. Elle sera réellement effacée après le temps "route-flush"
- Route-flush
  - 120 secondes
  - Périodicité du nettoyage de la tables de routage de RIP. Les routes invalides sont effacées.

1. Couche réseau 41

#### Sécurité de RIPv2

- On veut se prémunir
  - Des routeurs intrus
  - De fausses informations (erreurs de paramétrage, mauvaises routes par défault)
- Authentification MD5
  - Cisco (secret partagé: key-string: class):
    - Ip rip authentication mode md5
    - Ip rip authentication key-chain name-of-chain



Route tag: distinction entre route interne (même AS) et externe

Subnet mask: Supporte VLSM!

1. Couche réseau

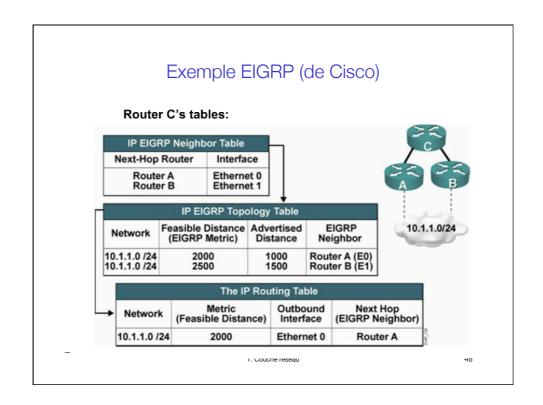
### **RIPng**

- RIP est une adaptation de RIPv2 pour IPv6. Quelques modifications:
  - Usage d'un autre port UDP: 521 au lieu de 520
  - L'authentification se base sur IPSec et plus MD5
  - La limitation du nombre de routes n'est plus 25 mais limitée par le MTU
  - Possibilité d'annoncer sépcifiquement un "next hop"

1. Couche réseau 43

§ 5.7 Tutorial IBM Cours TCP/IP, Le Boudec, EPFL

#### **EIGRP**


Enhanced interior Gateway Routing Protocol

- Protocole propriétaire (Cisco), pas de standard IETF
- Utilise une métrique pour estimer le délai global
- Maintient une liste de routes alternatives
  - Peuvent être utilisées en cas de défaillance d'un lien
  - Peut partager de la largeur de bande (load sharing)
- Nouveau routeur voisin: échange des tables de routage mais propagation des changements seulement
- Supporte VLSM et CIDR

# EIGRP (2)

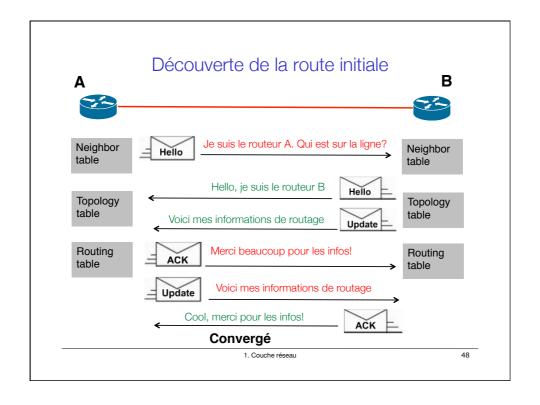
- Broadcast toutes les 90 secondes
- Pas de limite à 15
  - # routeurs inclu dans les messages
- Peut faire un résumé des routes
- Maintient une table pour connaître l'état de ses voisins adjascents (neighbor table)
- Maintient une table de topologie pour créer la table de routage IP
- Peut garantir l'ordre d'arrivée des paquets à son voisin
  sans garantir la fiabilité de l'arrivée des paquets
- Typiquement un processus pour IPv4 et un autre pour IPv6

1. Couche réseau 45



# Paquets EIGRP

Hello: établi une relation avec ses voisins


Update: envoie des mises à jour de routage

Query: interroge les voisins sur des informations de

routage

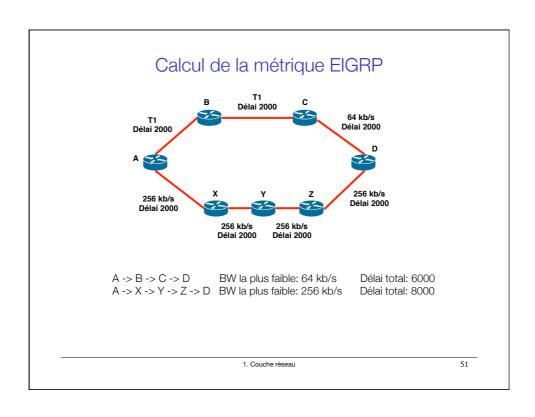
Reply: répond à une interrogation de routage

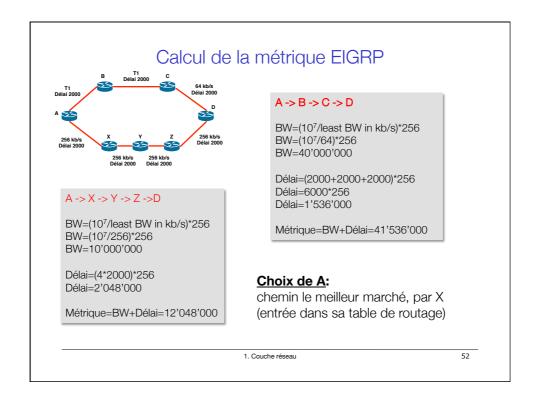
ACK: aquitte un paquet



#### **EIGRP**

- Métriques
  - Largeur de bande
  - Délai
  - Fiabilité
  - Charge
  - MTU
- EIGRP est la métrique IGRP multipliée par 256


1. Couche réseau


49

# Calcul de la métrique EIGRP

- Par défault la métrique EIGRP est
   Métrique=Largeur de bande (ligne la plus lente)+délai (somme des délais)
- Délai=somme des délais le long du chemin, en dizaines de microsecondes, multiplié par 256.
- Largeur de bande (BW: Bandwidth)
  [10<sup>7</sup>/largeur de bande minimum le long du chemin en kb/s]\*256
- Métrique
  - K de défault: K1=1, K2=0, K3=1, K4=0, K5=0
    Métrique = [K1\*BW+(K2\*BW)/(256-load)+K3\*délai]
- Si K n'est pas =0 (reliability=fiabilité)
  Métrique = Métrique\*[K5/(reliability+K4)]

1. Couche réseau





Cours TCP/IP, Le Boudec, EPFL

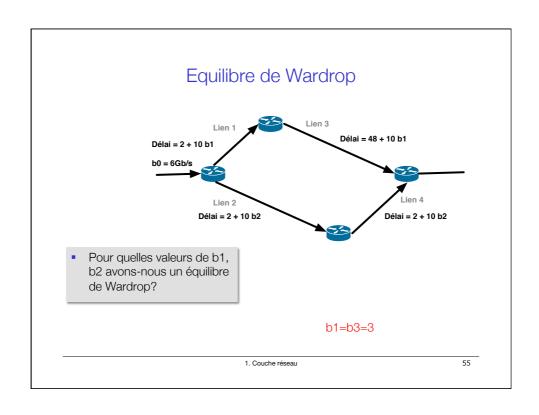
# Métriques dynamiques

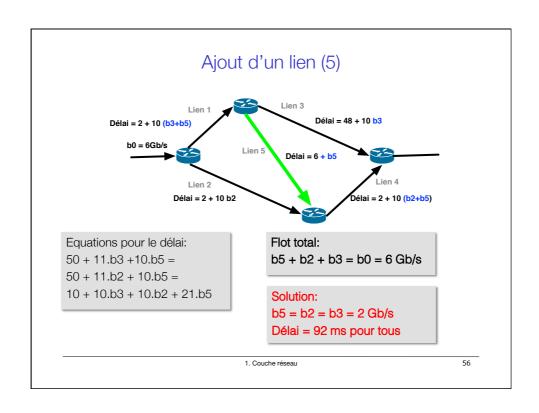
- Certains proposent des métriques dynamiques pour améliorer le chemin le plus court
- Plus de charge sur le réseau -> coûts hauts -> utilisation moindre de la ligne
  - Utilisé par EIGRP
- Il peut y avoir un certain nombre de questions: paradoxe de Braess

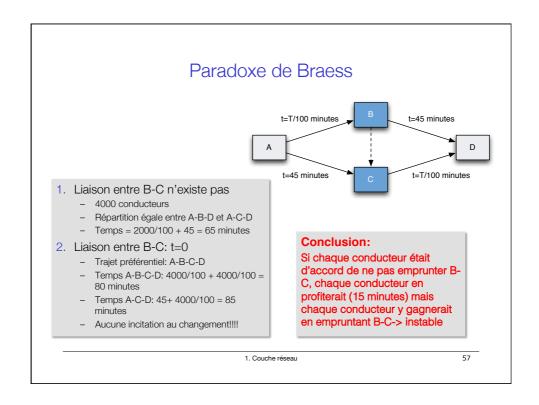
1. Couche réseau

# Routage avec un délai minimum et équilibre de Wardrop

- Hypothèse: Tous les flots choisissent un chemin au délai minimum
- Des chemins alternatifs les utiliser
- Il peut y avoir un équilibre (équilibre de Wardrop) tel que les délais de tous les chemins sont égaux.


#### Premier principe de Wardrop


The journey times in all routes actually used are equal and less than those which would be experienced by a single existent et les flots peuvent vehicle on any unused route (wikipédia)


> Deuxième principe de Wardrop At equilibrium the average

journey time is minimum (wikipédia)

1. Couche réseau







#### Paradoxe de Braess

- Calcul du délai
  - Lorsque la ligne 5 est désactivée .....
  - Lorsque la ligne 5 est activée .....
- On a à faire avec le paradoxe de Braess
- Conclusion:
  - Le routage basé sur le délai n'est pas optimal

### Routage optimal

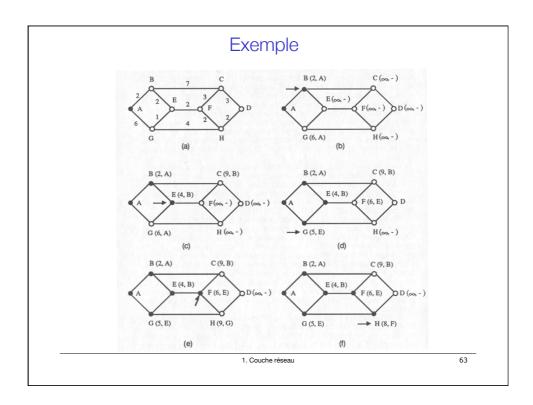
- A la place de calculer le trajet ayant le délai minimum nous pourrions essayer de résoudre un problème d'optimisation en maximisant une sorte de « fonction d'utilité (utility function) » comme par exemple:
  - Minimisation du délai total soumis aux contraintes des flots (la solution optimale dépend de tous les flots)
  - Référence pour un exemple d'implémentation d'algorithme distribué pour le contrôle de congestion TCP: Data Networks, Bertsekas et Gallager.

1. Couche réseau 59

# Conclusion sur le routage à vecteur de distance

- Le routage à vecteur de distance est bien pensé
  - Complétement distribué
- Déployé à grande échelle
- Simple
- Par contre: convergence lente
  - Pas adapté pour les grands réseaux comlexes
  - Les protocoles à état de liens devraient être utilisés à la place

# Routage par état de liaison


- Le routage par vecteur de distance fut utilisé dans l'ARPANET jusqu'en 1979
  - Métrique originale : longueur des files d'attente
    - Idée: chemin avec un délai de transfert minimal
    - Applicable si toutes les lignes ont le même débit
  - Problèmes:
    - Évolution vers des interconnexions hétérogènes
    - Convergence trop lente dans un réseau important
- Introduction du routage par état de lien (link state routing) dans ARPANET

1. Couche réseau

61

### Préambule: le plus court chemin

- Algorithme de Dijkstra
  - Représenter le réseau par un graphe
  - Pondérer chaque arête k par un coût p<sub>k</sub>
  - 0. Marguer chaque nœud par un doublet (C<sub>i</sub>,N<sub>v</sub>)
    - C<sub>i</sub>: Distance totale de la source
    - N<sub>x</sub> : Nœud précédent (pour reconstruir le chemin)
  - Doublet de chaque nœud initialisé à (¥,-) à l'exception du nœud d'origine initialisé à (0,-)
  - 2. Choisir le nœud  $N_i$  avec le coût  $C_i$  le plus bas et qui n'est pas marqué et le marquer comme 'permanent'
  - 3. Calculer les coûts des chemins de tous les voisins  $N_j$  du nœud  $N_i$  :  $C_j \! = \! C_i \! + \! p_k$
  - 4. Si la nouvelle valeur  $C_j$  est plus petite que l'ancienne,
    - --> actualiser le doublet de  $N_i$ :  $(C_i, N_i)$
  - 5. Répéter à partir de 2 jusqu'à ce que la destination soit marquée 'permanent'



# Routage par état de lien : principe

- Chaque routeur doit périodiquement effectuer les opérations suivantes:
  - 1. Découvrir ses voisins et apprendre leur adresse respective
  - 2. Déterminer la distance vers chacun des voisins
  - 3. Construire un paquet contentant l'information apprise
  - 4. Envoyer ce paquet spécial à tous les autres routeurs du sousréseau
  - 5. Calculer le plus court chemin vers tous les autres routeurs
- Un routeur apprend alors la topologie complète du réseau
- Calculer le plus court chemin

#### Découvrir ses voisins

- Un routeur envoie périodiquement des messages Hello sur toutes les lignes de sortie
  - Un routeur voisin répond avec
    - son nom,
    - son adresse IP, ...
  - Ainsi, un routeur détecte rapidement l'état des liens de sortie (up, down)

1. Couche réseau

# Déterminer la métrique des liens

- Un protocole d'état de liens peut se baser sur plusieurs métrique pour le calcul du plus court chemin
  - Exemples:
    - délai,
    - throughput,
    - fiabilité de transmission
- Les métriques peuvent être mesurées à l'aide de paquets de test

1. Couche réseau

66

#### Diffusion de l'information

 Chaque routeur construit des paquets contentant l'information sur l'état des liens locaux (LSP: link state packet)



| Link |    |    |    |        |     | State |      |     |      |   |      | Pac | kets | 3    |   |   |
|------|----|----|----|--------|-----|-------|------|-----|------|---|------|-----|------|------|---|---|
| Α    |    | E  | 3  |        | С   |       |      | D   |      |   | E    |     |      | F    |   |   |
| Se   | q. |    | Se | Seq. S |     | Se    | Seq. |     | Seq. |   | Seq. |     |      | Seq. |   |   |
| Age  |    | Αç | je |        | Age |       |      | Age |      |   | Age  |     |      | Age  |   |   |
| В    | 4  |    | Α  | 4      |     | В     | 2    |     | С    | 3 |      | Α   | 5    |      | В | 6 |
| Е    | 5  |    | С  | 2      |     | D     | 3    |     | F    | 7 |      | С   | 1    |      | D | 7 |
|      |    |    | F  | 6      |     | Е     | 1    |     |      |   |      | F   | 8    |      | E | 8 |

- Les LSP d'un routeur sont diffusés dans le réseau entier
  - Inondation fiable
    - Un routeur transmet un LSP reçu sur tous les ports sauf le port de réception
    - Un numéro de séquence unique permet d'éliminer des LSP dupliqués
      Un routeur incrémente le no. de séquence pour chaque LSP émis
    - Les autres routeurs enregistrent le LSP le plus récent de chaque nœud
    - Éliminer les LSP quand sa durée de vie est terminée
    - La réception d'un LSP est confirmé par un accusé de réception

1. Couche réseau 67

# Calcul du plus court chemin

- Un routeur apprend l'état des liens du réseau entier
- Le calcul du plus court chemin peut être effectué en local à chaque nœud
  - Aucune dépendance du calcul d'autres routeurs
  - Convergence rapide et garantie
  - La synchronisation des bases de données garanti l'absence de boucles persistantes
  - Chaque nœud calcule un arbre de chemins minimaux à partir de lui même comme racine
- Méthodes de calcul :algorithme de Dijkstra
  - C'est le meilleur algorithme connu pour ceci

# Comparaison Vecteur de distance – État de lien

- Vecteur de distance
  - Transmission des vecteurs de distance entre voisins
    - Information globale: distances vers toutes les destinations
    - Peuvent devenir très longs dans des réseaux importants
  - Calcul distribué
    - Convergence peut être lente
    - Problème du comptage à infini
      - La distance maximale doit être limitée, p.ex. à 15
- État de lien
  - Diffusion de l'information topologique par inondation
    - Information sur la topologie locale vue d'un routeur
    - Nécessite la limitation de la taille d'un réseau
  - Calcul local --> convergence rapide et fiable

1. Couche réseau 69

Exercices 25, 26, 27, 31, 33, 34, 35, 36, 37, 49

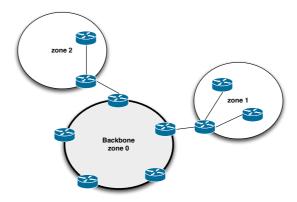
# OSPF Open Shortest Path First

- Caractéristiques du protocole
  - Protocole 'ouvert' : standard Internet non-propriétaire
  - Protocole d'état de lien
  - Permet l'utilisation de plusieurs métriques
    - Routage peut dépendre du type de trafic
  - Permet l'équilibrage de la charge sur plusieurs chemins à coût égal (load balancing)
  - Domaines > 16 routeurs
  - Protocole IGP (à l'intérieur d'un Système Autonome)
    - Introduit une hiérarchie supplémentaire dans l'AS : les zones
- Protocole de routage le plus utilisé actuellement

1. Couche réseau 71

#### **OSPF** standarisation

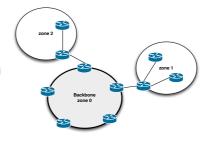
- OSPFv1: RFC1131, RFC 1247
- OSPFv2: RFC 2328, RFC 3630
- OSPFv3: RFC 2740 (adaptation pour IPv6), RFC 3101 (aires NSSA), RFC 4552 (confidentialité et authentification des échanges)


#### Diviser les grands réseaux

- Pourquoi faut-il diviser les grands réseaux (nombre de routeurs) ?
- Coût de la mise à jour des tables de routage
  - Si la topologie change les tables sont mises à jour
  - Algorithme de Dijstra: n routeurs, k chemins -> complexité O(n\*k)
  - Taille de la base de données (augmente avec la taille du réseau)
- Utilisation d'un routage hiérarchique pour limiter les mises à jour et le temps de calcul
  - Plusieurs zones (areas)
  - Calculs des chemins indépendament dans chaque zone
  - Aggréger les informations de routage et les injecter dans les autres zones

1. Couche réseau 73

# Principe du routage hiérarchique

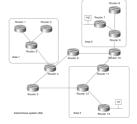

- Un système autonome (AS) est divisé en zones (areas)
  - Zone 0 : réseau backbone
  - Interconnecte les autres zones



1. Couche réseau

## Principe du routage hiérarchique

- Tout le trafic des zones va passer par la zone 0
  - Hiérarchie stricte
- A l'intérieur d'une zone: routage à état de lien « classique »
  - Une base de données par zone
- Routage à plus haut niveau: vecteur de distance (pas de problèmes de boucles avec un backbone, zone 0)




1. Couche réseau

75

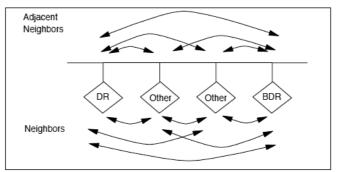
#### Routeurs

- OSPF comprend 4 types de routeurs
  - Routeur intra-zone
    - Entièrement à l'intérieur d'une zone
  - Routeur inter-zones (Area Border Router ABR)
    - Connecté à plus d'une zone
  - Routeur fédérateur (Backbone Router)
    - Connecté à l'épine dorsale (zone 0)
  - Routeur inter-systèmes autonomes (AS Boundary Routers)
    - Connecté aux routeurs d'autres Systèmes Autonomes



1. Couche réseau

# OSPF: Échange d'information de topologie


- Principe
  - La topologie d'une zone est invisible aux routeurs d'autres zones
  - Les routeurs intra-zone ne connaissent pas la topologie du réseau backhone
- Fonctionnement
  - Un routeur intra-zone diffuse des LSP à tous les routeurs de sa zone
    - Construction des plus courts chemins à l'intérieur de chaque zone, y compris la zone 0
  - Les routeurs inter-zones injectent des résumés d'état de liens interzones dans les zones locales
    - Permet aux routeurs intra-zones de trouver la meilleure sortie vers une autre zone

1. Couche réseau 77

# Routeurs voisins et "adjacences"

- Les routeurs se trouvent dans une même zone OSPF (même mot de passe, les timers pour les paquets Hello sont les mêmes, même stub area)
- Si deux routeurs sont voisins alors ils peuvent établir une relation d'adjacence.
- Deux routeurs sont considérés adjacents lorsqu'ils ont synchronisés leurs bases de données contenant la topologie.
- Multicast
  - 224.0.0.5 tous les routeurs sur la ligne
  - 224.0.0.6 tous les routeurs désignés (DR) et de backup (BDR) sur la ligne

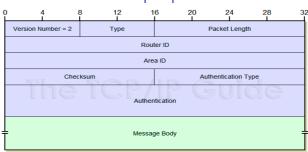
## Relation entre voisins et adjacences



Source: tutorial IBM

Il n'y a pas d'adjacences entre routeurs qui ne pas sélectionnés pour être un DR ou un BDR

1. Couche réseau


## Routeur désigné et routeur de backup

- S'il y a plusieurs routeurs dans un réseau, un routeur principal est désigné (Designated Router, DR) ainsi qu'un routeur de backup (Backup Designated Router, BDR)
- Le DR et le BDR ont les mêmes fonctionalités. Le BDR prend le relai si le DR "lâche"
- Le DR existe pour réduire le trafic d'innondation, en réduisant le nombre d'adjacences
- Chaque routeur acquiert la base de données du routeur principal
- Chaque routeur diffuse à ses voisins (LSA)
  - Liste de ses voisins immédiats
  - Coût de la liaison vers chaque voisin
- Chaque routeur met à jour sa base de données -> vision globale du réseau
- Chaque routeur calcule ses meilleurs routes -> tables de routage

Couche réseau

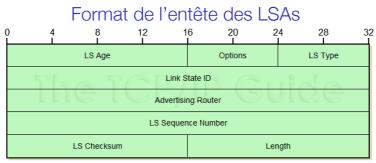
80





- Type: 1: Hello, 2: Database description, 3: Link State Request, 4: Link State Update, 5: Link State ACK
- Packet length: Longueur du message
- Router ID: Identificateur du routeurqui a généré le message (en général l'adresse IP d'un de ses interfaces)
- Area ID: Area de laquelle vient le message
- Authentication type: 0: sans authentification, 1: mot de passe, 2: authentification cryptée.

1. Couche réseau 81


# LSAs (Link State Advertisements) et innondation

- Les LSAs sont échangés entre des routeurs adjacents pour synchroniser les bases de données
- Quand un routeur génère ou modifie un LSA il le transmet aux routeurs adjacents qui transmettent le message à leurs voisins
- Chaque LSA est acquitté
- Quand un lien casse, un nouveau LSP (Link State Packet) est envoyé et tous les routeurs recalculent leurs tables de routage

## Types d'information des LSAs

- Router LSAs
  - Décrit l'état des interfaces des routeurs. Généré par chaque routeur OSPF
- Network LSAs
  - Liste des routeurs connectés à un réseau multi-accès. Généré par le DR. Innondation dans l'aire
- Summary LSAs
  - Générés par l'ABR (Area Border Router)
    - Type 3: les LSAs décrivent les routes aux destinations dans les autres aires au sein du réseau OSPF
    - Type 4: décrit les routes aux ASBR (AS Border Router, en contact avec d'autres environnements de routage)
- AS external LSAs
  - Décrivent les routes externes au réseau OSPF. Générées par un ASBR. Innodation dans toutes les aires

1. Couche réseau 83



Source: The TCP/IP Guide

- LS Age: Nombre de secondes depuis que le LSA a été créé
- LS Type: 1: Router LSA, 2: Network LSA, 3: Summary LSA (IP Net), 4: Summary LSA (ASBR), 5: AS External
- Link State ID: En général adresse IP du routeur ou de la ligne
- Advertising Router: ID du routeur qui est à l'origine du LSA
- LS Checksum: Checksum du LSA, protection des données
- Length: Longueur du LSA, y compris les 20 octets d'entête

#### Communication entre voisins

- 1. Découverte des voisins (HELLO)
- 2. Election d'un routeur désigné
- 3. Etablissement des adjascences

#### Paquets HELLO

Maintient la relation entre les routeurs voisins. Envoyés périodiquement par les interfaces des routeurs. Contient le Router ID, priorité, DR et BDR Id.

#### Election du routeur désigné

Le DR et le BDR sont sélectionnés sur la base des paquets HELLO. Le routeur avec la plus haute priorité OSPF (1-255) devient le DR sur un segment. La même méthode est appliquée pour le BDR. En cas d'égalité c'est le routeur avec le plus haut RID qui gagne. Si un routeur a une priorité 0, il ne sera jamais DR ou BDR

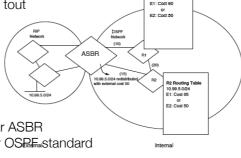
1. Couche réseau 85

# Communication entre voisins (2)

Etablissement des adjascences et synchronisation des bases de données

1. Processus d'échange entre les bases de données

Lorsque deux voisins essaient d'établir une adjascence: échange de paquets de description (liste de LSAs). Mémorisé dans la base de données locale. Etablissement d'une relation "maître-esclave".


2. Chargement de la base de données

Quand le processus d'échange est terminé chaque routeur demande l'information la plus récente à son voisin avec lequel il a une relation d'adjascence (avec un paquet de requête).

#### OSPF: routes redistribution

- Introduction de routes externes dans le réseau OSPF
  - Peuvent être statiques, apprises d'un autre protocole de routage

 ASBR publie ces routes dans tout le réseau OSPF (innondation)

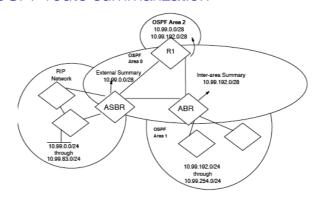


Routes (de bout-en-bout)

Portion externe: coût attribué par ASBR

Portion interne: coût attribué par OSRF-standard

Couche réseau


87

#### OSPF: stub areas

- Aire dans laquelle on n'a pas d'innondation de LSAs
- But: réduction de la base de données (link state) maintenue dans les routeurs des stub areas-> uniquement une route par défault
- Route optimale pas assurée!

1. Couche réseau

## OSPF route summarization



- Plusieurs routes dans un seul paquet (advertisement)
- But: réduction de la table de routage et de la base de données « link state »
  - 1. Inter-area summary: done by ABR
  - 2. External route summary: done by ASBR

1. Couche réseau

89

# TOS et métriques OSPF

#### TOS

- Mapping des 4 bits de TOS en un chiffre décimal
- 0 normal service
- 2 minimize monetary cost
- 4 minimize reliability
- 8 maximize throughput
- 16 minimize delay

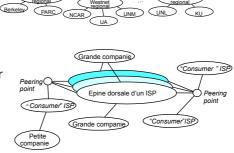
#### Métrique

- Temps pour envoyer 100 Mb/s sur l'interface
- $C = 10^8/largeur de bande$
- 1 si plus grand que 100 Mb/s
- Peut être configurée par l'administrateur

1. Couche réseau

# Comparaison RIP-OSPF

- OSPF est bien plus compliqué mais présente des avantages:
  - Pas de comptage à l'infini
  - Pas de limite sur le nombre de sauts (hops)
  - Moins de trafic de signalisation (mise à jour LS toutes les 30 minutes)
  - Métrique évoluée
  - Routage hiérarchique pour les grands réseaux
  - Génère du trafic surtout quand on a un changement de topologie (bien qu'on ait des paquets Hello envoyés périodiquement)


1. Couche réseau

91

- Désavantage
  - Difficile à configurer

# Protocoles de routage inter-domaine (Exterior Gateway Protocols)

- Protocoles de routage entre Systèmes Autonomes
  - Premier protocole : EGP
    - Nécessitait une topologie en arborescence simple
    - N'est plus utilisé
  - Protocole actuelle : BGP (Border Gateway Protocol)
    - A remplacé EGP dans Internet
    - Permet une topologie arbitraire



1. Couche réseau

#### Exercice 50

1. Couche réseau

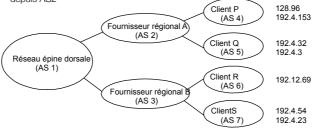
94

#### **BGP**

- Principes de conception
  - Doit pouvoir gérer les routes dans l'Internet global
    - Actuellement, un routeur BGP connaît environ 90'000 routes
  - Ne peut pas se baser sur les métriques utilisées dans les AS
    - Chaque AS est libre de choisir sa stratégie de routage
    - La notion du plus court chemin n'est pas applicable
  - Utilise des stratégies de routage pour filtrer les routes acceptables
    - Exemple Sun : ne pas utiliser une route qui travers l'AS de Microsoft
- BGP ne cherche pas le meilleur chemin mais un chemin quelconque
  - Échange des informations d'accessibilité
  - Évite des boucles de routage
  - Configuration locale d'une stratégie de routage

1. Couche réseau 95

## Systèmes Autonomes (AS) Sous le contrôle d'une seule administration Peut comprendre plusieurs réseaux (NetIds) - Exemples: • Réseau d'un ISP et de ses clients • Réseau d'une grande entreprise Types d'AS - Le bout de AS : (stub AS) A une seule connexion avec un autre système autonome • Transporte du trafic local seulement AS multi-ports: (multi-homed AS) • A des connexions avec plus d'un système autonome • Refuse de transporter le trafic de transit AS de transit : (transit AS) • A des connexions avec plusieurs autres AS • Transporte le trafic local et le trafic de transit 1. Couche réseau


#### Introduction au fonctionnement de BGP

- Chaque système autonome a un ou plusieurs routeurs BGP
- Un routeur BGP annonce vers l'extérieur :
  - les réseaux à l'intérieur de l'AS
  - les réseaux externes atteignables à travers l'AS
  - Communique le chemin entier pour atteindre chaque réseau
    - Exemple : AS A annonce une route vers un réseau n:
      - n: A-B-C-F (chemin des AS traversés)
    - Permet de filtrer les routes
    - Permet de détecter facilement des boucles de routage
  - > External BGP
- Un routeur BGP communique avec les routeurs internes
  - Diffuse quelques routes apprises vers l'intérieur du AS
  - S'assure de la connectivité à d'autres AS
  - > Internal BGP

1. Couche réseau 97

## Exemple EBGP

- Router BGP pour AS2 annonce l'accessibilité de P et Q
  - Les réseaux 128.96, 192.4.153, 192.4.32, et 192.4.3, peuvent être atteints directement depuis AS2



- Le routeur BGP de l'épine dorsale annonce
  - Les réseaux 128.96, 192.4.153, 192.4.32, et 192.4.3 peuvent être atteints le long du chemin (AS1, AS2).
- Le routeur BGP peut supprimer des chemins annoncés précédemment

1. Couche réseau

## Exercices 44, 46

1. Couche réseau

99

# Routages sans classes

- Problème actuelle de BGP
  - Les adresses classe B sont épuisées
  - Une grande entreprise ayant plus de 255 hôtes doit utiliser plusieurs adresses classe C
  - Un routeurs BGP doit connaître et annoncer des routes pour chaque réseau classe C
    - En théorie jusqu'à 2 mio de routes vers des réseaux classe C
- Solution
  - Allocation de blocs de taille variable d'adresses classe C
    - Site à 2000 hôtes : allocation de 8 adresses classe C contiguës
      - Meilleure efficacité que l'allocation d'une adresse classe B
  - Un bloc d'adresses est alloué de telle manière qu'il forme un superréseau avec un préfix d'identificateur de réseau commun

1. Couche réseau

# Exemple

- Site ayant besoin de 4000 adresses
  - Allocation de 16 adresses classe C:
    - 192.4.16 192.4.31
    - Structure normale des adresses

Class C 1 1 0 Network ID (21 bits) Host 8bit

- Ces adresses on le même préfixe binaire
  - Premiers 20 bits = 11000000 00000100 0001
  - Elles peuvent être agrégées dans un seul 'super-réseau' ayant un identificateur de réseau sur 20 bits
- Contrainte
  - Les blocs d'adresses doivent avoir une taille de 2<sup>x</sup> d'adresses classe C

1 1 0 Network ID (17 bits+3bits)

1. Couche réseau 101

Host 12 bits

# Classless Inter-Domain Routing

- CIDR
  - Implémenté dans la nouvelle version BGP-4
    - Définit des identificateurs de réseau de longueur variable
    - Compromis entre efficacité et complexité du routage
  - Agrégation de routes avec CIDR
    - Si un routeur utilise la même route pour plusieurs blocs d'adresses contigus, il peut annoncer une seule route



- Exemple
  - Adresses classe C 194.0.0.0 195.255.255.255 --> Europe
  - Un routeur BGP américain considère les premiers 8 bit pour le routage
  - Un routeur BGP européen doit considérer des préfixes plus longs

# Exercices 40, 41, 42, 43

1. Couche réseau

103

#### Mobilité dans IP

- Objectif
  - Rendre possible le déplacement d'un ordinateur mobile (PC portable, agenda électronique, ...) d'un réseau à un autre de manière transparente pour les applications
- Types
  - Nomadicité (portability)
    - Déplacement 'off-line', mais sans re-paramétrage manuelle
    - Nécessite l'interruption de toutes les connexions en cours
    - --> DHCP
  - Mobilité d'un ordinateur
    - Un ordinateur mobile peut changer sont point d'attachement sans interrompre les communications en cours
  - Réseau mobile
    - Réseau ad-hoc sans infrastructure

1. Couche réseau

## Problème de l'adressage IP

- Une adresse IP
  - identifie un système terminal
    - Correspondance statique entre le nom de domaine et l'adresse IP par DNS
  - détermine la route vers un système terminal
    - L'adresse IP comprend un NetId et un HostId
    - Le routage utilise le NetId pour trouver le chemin vers le système terminal
- Contradiction
  - Un ordinateur mobile nécessite une adresse fixe pour être joignable
  - Une adresse fixe implique un routage fixe
- Idée : Utiliser deux adresses
  - Une adresse qui identifie un ordinateur
  - Une adresse qui permet de joindre l'ordinateur

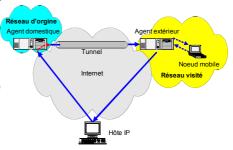
1. Couche réseau 105

#### Mobile IP

- Défini dans la RFC 2002 (3344)
  - Permet une mobilité globale dans Internet
  - Solution au niveau de la couche Réseau
- Principes de conception
  - 1. Transparence pour les applications existantes
    - Un ordinateur mobile doit être capable de communiquer avec un autre ordinateur qui n'implémente pas IP Mobile
    - Un ordinateur mobile doit être joignable en utilisant uniquement son adresse IP (normale)
  - 2. Transparence pour les routeurs existants
    - Aucune modification de la méthode de routage
    - Sans modification permanente des tables de routage
  - 3. Sécurité
    - Un ordinateur mobile ne doit pas être plus exposé qu'une autre machine

# Terminologie

- Nœud mobile
  - Nœud qui peut changer de points d'attachement sur l'Internet tout en maintenant les communications en cours
- Réseau d'origine (Home Network)
  - Réseau auquel appartient l'adresse IP du nœud mobile
- Réseau extérieur (Foreign Network)
  - Réseau visité par le nœud mobile
- Agent domestique (Home Agent)
  - Routeur avec une interface sur le réseau d'origine du nœud mobile
- Agent extérieur (Foreign Agent)
  - Routeur situé dans le réseau visité par le mobile


1. Couche réseau 107

#### Adresses

- 1. Adresse de domiciliation (Home Address)
  - Adresse principale de l'ordinateur mobile dans son réseau d'origine
  - Adresse sur laquelle le mobile est contacté par d'autres machines
- 2. Adresse de réexpédition (Care-of Address, c/o address)
  - Adresse faisant partie du réseau visité
  - Utilisée par l'agent domestique et l'agent extérieur pour acheminer des messages
  - Deux types
    - « Adresse de réexpédition par agent extérieur »
      - Adresse de l'agent extérieur
    - « Adresse de réexpédition par colocataire »
      - Adresse assignée de manière temporaire à l'ordinateur mobile

#### Principe du protocole

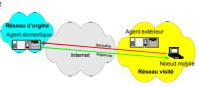
- Un nœud mobile obtient une adresse de réexpédition du réseau visité
- Le nœud mobile enregistre son adresse c/o auprès de son agent domestique
- L'agent domestique intercepte tous les paquets destinés au nœud mobile et les transmet à travers un tunnel vers l'adresse c/o
- Le nœud mobile envoie ses paquets directement aux correspondants



1. Couche réseau

109

## Découverte des agents


- Permet à un nœud mobile de savoir s'il se trouve dans son réseau d'origine ou dans un autre réseau
- Principe
  - Les agents diffusent périodiquement des messages « Agent advertisement » sur le LAN auquel ils sont attachés
  - Un nœud mobile peut aussi solliciter une réponse d'un agent présent en envoyant un message de découverte d'agent
- Format des messages
  - Extension des messages ICMP standard
  - Le message « Agent advertisement » contient
    - Une adresse de réexpédition que le nœud mobile peut utiliser
    - Une durée de vie pendant laquelle l'agent prend en compte l'enregistrement du mobile

|                   | 0         | 8      | 16           | 24 31    |
|-------------------|-----------|--------|--------------|----------|
|                   | TYPE (16) | LENGTH | SEQUENCE NUM |          |
|                   | LIFETIME  |        | CODE         | RESERVED |
| CARE-OF ADDRESSES |           |        |              |          |

1. Couche réseau

## **Enregistrement**

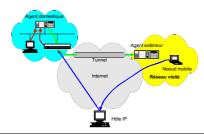
- Lorsqu'un mobile est hors de son réseau d'origine il enregistre son adresse temporaire auprès de son agent domestique
- Deux cas
  - 1. Le mobile utilise l'adresse de réexpédition de l'agent extérieur
    - Le mobile envoie une requête d'enregistrement à l'agent extérieur qui la fait suivre à l'agent domestique
    - L'agent domestique revoie la réponse d'enregistrement à l'agent extérieur qui la passe au mobile
  - 2. Le mobile utilise une adresse de réexpédition par colocataire, obtenue p.ex. à l'aide de DHCP
    - La requête et la réponse sont envoyées directement entre le mobile et l'agent domestique



1. Couche réseau

111

## Contenu des messages d'enregistrement

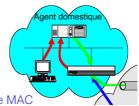

| 0               | 8     | 16 31    |  |  |
|-----------------|-------|----------|--|--|
| TYPE (1 or 3)   | FLAGS | LIFETIME |  |  |
| HOME ADDRESS    |       |          |  |  |
| HOME AGENT      |       |          |  |  |
| CARE-OF ADDRESS |       |          |  |  |
| IDENTIFICATION  |       |          |  |  |
| EXTENSIONS      |       |          |  |  |

- Type: requête ou réponse
- Durée de vie: les agents peuvent limiter la durée de validité de l'enregistrement
- Adresse de domiciliation et adresse de réexpédition
- Agent domestique
- Identification: valeur générée par le mobile pour identifier les requêtes et réponse et pour des raisons de sécurité
- Drapeaux/Code: indique le succès de la requête ou des options supplémentaires
- Extensions: p.ex. authentification

1. Couche réseau

## Transmission des datagrammes

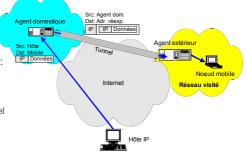
- Mobile --> Correspondant
  - Le mobile envoie des datagramme avec son adresse de domiciliation comme source
  - Le datagramme utilise le routage habituel pour arriver au destinataire
- Correspondant --> Mobile
  - Les datagrammes envoyés par une machine quelconque au mobile sont routés vers le réseau d'origine du mobile
  - L'agent domestique doit
    - Intercepter les datagrammes destinés au mobile
    - Les réexpédier vers le mobile en contournant le routage normal




1. Couche réseau

113

## Interception des messages


- L'agent domestique doit intercepter les messages provenant
  - De l'extérieur (d'un ordinateur se trouvant dans un autre réseau)
  - De l'intérieur (d'un ordinateur local connecté au même réseau)
- L'agent domestique ne se trouve pas nécessairement dans le chemin des datagrammes
- Technique : proxy ARP
  - L'agent mobile répond aux requêtes ARP concernant le nœud mobile avec son adresse MAC
  - Toutes les trames destinées au nœud mobile arrivent à l'agent domestique



1. Couche réseau

#### Tunnel

- Technique souvent utilisée pour contourner le routage habituel
- Principe
  - L'agent domestique encapsule le datagramme intercepté dans un autre datagramme, ayant comme destinataire l'adresse de réexpédition
  - La terminaison du tunnel décaps le datagramme original
    - Réexpédition par agent extérieur :
      - L'agent extérieur sert de terminaison de tunnel
    - Réexpédition par colocation :
      - Le nœud mobile termine le tunnel



1. Couche réseau

115

## Aspects problématiques de Mobile IP

- Sécurité
  - Le mécanisme d'enregistration permet à un intrus de dévier/ interrompre des communications
    - > Mécanisme d'authentification
  - Configuration des firewalls des réseaux visités/d'origine
- Inefficacité de routage (triangle routing)
  - Une solution est de communiquer l'adresse de réexpédition au correspondant pour établir un tunnel direct vers le nœud mobile
    - Le correspondant doit implémenter IP Mobile
- Fast handoff
  - Pendant la transition d'un réseau à un autre, des paquets peuvent arriver à la mauvaise adresse de réexpédition
  - « A better than nothing fast handover », Doswald, Robert

1. Couche réseau