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Abstract 

This paper addresses the problem of finding the parameters of the arrival law which most significantly influence 
expected occupation and loss of a finite capacity queue. The input process is supposed to be ergodic and wide sense 
stationary. We show that it is mostly possible to fit an MMPP(2) to the decisive parameters of observational data. 
Numerical examples iifustrate the importance of the decisive parameters, called key parameters, and also show the 
accuracy of the proposed fitting procedure. Finally, in the appendix we present the solution of the finite capacity 
queueing problem with Special Semi Markov Process (SSMP) arrivals and a general service strategy. 

Keywords: Finite capacity queue; Arrival laws; Spectral density; Experimental statistics; Fitting algorithm; Asyn- 
chronous transfer mode 

1. Introduction 

Multimedia communication systems move information data sets from one site to another by 
coordinated transmissions of data subsets. Application programs define sets of data to create 
multimedia information and maintain the representations associated with these sets; communi- 
cation systems define collections of communication links to create multimedia streams and 
maintain their representations. 

For the last few years the demand for multimedia services has continuously been increasing. 
To satisfy the provision of the Broadband Integrated Services Digital Network (B-ISDN) with 
high bandwidth becomes necessary. The Telecommunications Standardization Sector (TS), the 
former CCITT, has selected the Asynchronous Transfer Mode (ATM) as the switching 
technology for the B-ISDN. Today’s fiber optic technology provides sufficient bandwidth for 
moving multimedia traffic between different locations and ATM ensures the integration and 
the switching of all the required different services. 
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The multimedia traffic arriving to an ATM network is the superposition of various cell 
streams generated by individual input sources, such as voice, data and video. Basically, all the 
sources can be split into four service classes (A, B, C and D) depending on the requirements for 
Constant (CBR) or Variable Bit Rate (VBR) and timing relationships [17]. To provide these 
four service classes, four ATM Adaptation Layers (AALs) are prepared which are also based 
on bit rate (constant or variable) and timing relationships. 

The basic parameter of the traffic descriptor of class A sources, in other words AALl 
compatible sources, is the peak cell rate. When considering, e.g. the Usage Parameter Control 
(UPC) at the User Network Interface (UNI) or the Quality of Service (QoS) parameter delay 
jitter, the maximally allowed Cell Delay Variation (CDV) has to be taken into account as well 
[16,18]. 

For all the other service classes the traffic descriptors characterize a VBR profile. Connec- 
tion-oriented traffic is mostly delay sensitive and connectionless traffic is loss sensitive. To 
summarize, from the performance point of view delay jitter and cell loss due to UPC or 
congestion are the most important network performance parameters. 

It is well known that traffic streams do not form a renewal process and they are mostly bursty 
and correlated, e.g. [14]. An accurate stochastic process characterizing such single traffic 
streams is the Semi Markov Process (SMP) [20] and [24]. The SMP is a Markov modulated 
doubly stochastic process. The Special Semi Markov Process (SSMP), a special class of the 
SMP, is an equivalent to the Discrete Time Markovian Arrival Process (DMAP) [4]. It is very 
well suited to input traffic modelling [6]. Every service, or in other words traffic stream, of a 
multimedia communication can accurately be fitted to an SSMP. The aggregation of all these 
particular services yields the traffic stream of the multimedia communication. The statistical 
multiplexer is a well known and accurate model for superimposing different traffic streams. Its 
output process, the traffic descriptor of the multimedia communication, is an SSMP as well. 
The superimposed input traffic stream is an SSMP and its transition matrix is given by the 
Kronecker product of the transition matrices of the single traffic streams. The number of 
arriving cells in each phase is given by the Kronecker sum [23]. Obviously, the state space of the 
multimedia traffic descriptor becomes enormous. 

When focusing only on the most relevant network parameters, typically delay jitter and cell 
loss, the state space can drastically be reduced. In an ATM system the mean cell delay jitter is 
given by the mean waiting time in the ATM switches and multiplexers. The cell loss ratio is 
given by the cell loss probability. When designing or measuring ATM systems, it is important to 
know which traffic parameters are generic and influence most significantly the system. In 
Section 2 we show under very general conditions that the mean cell delay jitter and the cell loss 
strongly depend on the arrival law’s key parameters, namely the load and the variance of each 
service and the spectral density at frequency zero, which is the sum over all lags of the arrival 
law’s autocovariance function. It is evident, that load is a relevant parameter, e.g. the mean 
occupation in the M/D/l queue only depends on this parameter. In Section 3 we give an 
algorithm for fitting observational data to an MMPP(2), while matching the key parameters. 
Furthermore, we show that it is not always possible to fit these three most important arrival law 
parameters of the aggregated traffic streams to an SSMP with only two phases while each phase 
describes batch arrivals. We mainly focus on an SSMP with two states since the MMPP with 
two states, a particular case of the SSMP, is the best known and most used traffic descriptor for 
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VBR sources, e.g. [l], [14] and [6]. In Section 4, we give some numerical examples for 
demonstrating the accuracy of the fitting method. 

2. Important queueing parameters 

In this section we consider the mean cell delay and the cell loss during a busy period of a 
queueing system. A busy period is defined to begin with the arrival of a cell to an idle queueing 
system (time -7) and to end when it next becomes idle (time 7). Let N(t) denote the number 
of cells in the queueing system at time t, where -T < t < T, N(t) > 0 and N( -7) = N(T) = 0 
and U(t) the number of arriving minus the number of served cells at time t. Furthermore, we 
assume the queueing system’s capacity to be limited to c places and that there are k excess 
periods during the busy period -T < t < T, t, = -7 and tzk+ 1 = T. The contents N(t) is then 
given by 

I -T=tO<t<tl, 

N(t) = 

i 

c> t,j_1 I t < tzj, 1 5 j I k, 

C+ 
/ 0 

‘Us ds, t2jst<t2j+l, 11jlk. 
t2, 

For the definition of the times ti, 0 I i I 2k + 1 we refer 
loss at time t, it is given by 

( 
0, t2jst ct2j+l, Oljlk, 

U s ds, ( ) t2j_1It<t2j,lSjIk. 

(1) 

to Fig. 1. Let M(t) denote the cell 

(2) 

We now focus only on the queueing system occupation N(t). Later on, it will be shown that 
similar arguments can also be applied to the loss M(t). Define the function P(w) by 

T(m) = $11 N(t) e-‘“’ dt 
7 

where !P(O) = E[N I -T < t < T]. E is the operator of the expected value. An excess period is 
defined to begin when the queueing system starts to be completely occupied, e.g. t, in Fig. 1, 

to =-T 9 t2 t2k-I t2k t2k+ I=z 

Fig. 1. Queueing system occupation versus time. 
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and to end when it next becomes only partially filled, e.g. t, in Fig. 1, this means N( t, - ) < c 
and N(t, + > < c. 

After substituting (1) into (3) and partial integration we obtain 

P(o) = 21: U(t) e-‘“’ dt = 
7 

& $ [LyflU(t) e-j”’ dt. 
I-0 21 

(4) 

It is useful to remember that 

0, 
dN(t) = 

t,j-1 I t < tzj, 1 2 j 5 k, 

U(t) dt, t,j I t < t,j+i, 0 5 j I k. 

We 
Let 

by 

next introduce the characteristic function x[~,~], which is 1 for a I t I b and 0 otherwise. 
the Fourier transform 9 of a function f(t) be defined as usual in signal processing, namely 

@(f(t)) = Irn f(t) em’“’ dt. 
-cc 

Hence (4) can be expressed as Fourier transform, this yields 

?P(w) = e-‘“’ dt = (5) 

We now calculate ?P(w>@(o), which is for w = 0 the square of the expected value of the 
queueing system occupation N: 

?P(o)iF(o) = &2 i f q 
j,l=O --7 -7 

d~x~t*j,r,j+l~X~~~,,~,,+l~~(~)~(~) CiWf eioi 
= & 2 /T dtjT d~xrr,,,,,j+,P(t)U(~) e-‘“’ e’“:. 

j=O -7 --7 

Changing the variables to u = t - i and t = t yields 

In the following we assume the process U(t) to be ergodic, this means 

(6) 

(7) 

(8) 

where 

n= ; {t: t2jItIt2j+l}. 

j=O 

Furthermore, we assume the process U(t) to be wide sense stationary, which means that 
E[U(t)] = q is independent of t, and that the autocorrelation E[U(t + uW(t)l =R,(v) only 
depends on the lag u. Obviously, R,(v) is symmetric, that means Z?,(u) = R,( -u). Hence, 
expression (8) becomes R,(v). 
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The spectral density @o(w) of the process U(t) is the Fourier transform of the autocovari- 
ante function C,(u) = R,(u) - q* [lo]. With this and the convolution theorem for Fourier 
transforms, expression (7) becomes 

1 

/ 

m sin(2ar) 
=- 

rw* --oo 
(y (@&I -a) + 27~7*6(0 -a)) dcu. 

In the following we approximately evaluate the integral of (9) at o = 0. The term sin(2ar)/cr 
has its main lobe at (Y = 0. The greater T the more important becomes this main lobe. Its width 
decreases with increasing 7. Or in other words, the greater r the more important become low 
frequencies. We therefore assume that o is proportional to l/7. This yields for small (Y that 

l/702 6 o/( fU* + LX*) ( 10) 

where 6 means approximately proportional to. 
Equation (9) can be given as an approximation, when substituting (10) into (91, taking w + 0, 

and limit and integration can be interchanged to obtain 

Since 

6J 

lim = vTT~((Y) and lim 
sin(27x) 

= 
0-o “* + a!* 

27 
x+0 X 

we obtain 

p(o)F(o) = (E[ N ( -T <t CT])” 6 hT(@,(o) + h7*). 

(11) 

(12) 
Equation (12) shows that during a busy period the squared expected value of the queueing 
system occupation is approximately proportional to an expression in which the following 
parameters are involved: 
- the expected value of the process U(t), that means the difference between arrival rate and 

service rate, 
- the spectral density Qv at frequency 0 of the process U(t), 
- the duration of the busy period, given as 27. 

The spectral density at frequency zero is equal to the integral over all lags of the 
autocovariance function of the process U(t). This shows that the occupation of the queueing 
system does not depend on the detailed but the global behauiour of the autocovuriunce function 
of the process U(t). For ATM systems typically, the service rate is constant and hence, only the 
spectral density at frequency zero of the arrival process influences the queueing system 
occupation. Furthermore, expression (12) shows that the expected value of U(t), the difference 
of mean arrival and service arrival rate, also decisively influences the queueing system 
occupation. The @JO) becomes for non-correlated arrivals equal to the variance. That means 
@JO) consists of the variance plus an extra term which characterizes the correlation. Thus, the 
influence of correlation on the queueing behaviour becomes more evident. It is therefore 
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suitable to consider also the variance of U, which gives an integral information about the whole 
spectral density, as a key parameter. The duration of the busy period strongly depends on the 
fluctuations of the service process of the queueing system [ll]. Therefore, it is obvious to 
replace the relevant parameter busy period by the relevant parameter, variance of the process 
U(t). Hence, the key parameters for the mean occupation - also for the loss as seen later on 
- of a queueing system are 
- the expected arrival and the expected service rate, more precisely the expectation of the 

process U( t ), 
- the variance of the process U(t), 
- the spectral density at frequency zero of the process U(t). 

A result which is similar to that of the mean occupation can now be derived easily for the 
mean cell loss during the busy period. Let c$(o) denote the Fourier transform of the mean cell 
loss. The busy period of the loss starts, see Fig. 1, at the time t, and ends up with t,,. In the 
following, these instants will be named as -T and T respectively. The Fourier transform of the 
mean loss is then given by 

(13) 

This equation is form-invariant to (4). Finally, we obtain for the squared mean loss a similar 
expression as for the mean occupation. 

4(0)6(O) = (E[M I-7 <t < 7])‘& 2+j,(O) + 2T?72). (14) 
It is important to point out that the factor 27 in (14) corresponds to the elapsed time 

between the first and the last loss during a busy period. Furthermore, it is very important to 
note that it is an approximate proportionality. In other words, both equations (12) and (14) do 
not serve for the computation of the mean occupation and the mean cell loss in a queueing 
system, but they clearly show the importance of parameters. These key parameters are, as 
already pointed out above, the spectral density at frequency zero of the process U(t), the 
variance, the mean arrival rate and the mean service rate. This is valid for the mean occupation 
as well as the mean loss. The analytical study of the mean occupation of the C2SM/D/l queue 
[21] clearly proves that the mean occupation only depends on the key parameters mentioned 
above. (2SM means two state Markov process, which is a generalization of the Bernoulli 
process.) 

3. The fitting procedure 

The probably best known process characterizing non-renewal arrivals is the Markov Modu- 
lated Poisson Process (MMPP) with two phases. Several fitting procedures for the MMPP(2) 
are given in literature, e.g. [1,6,14,22,25] 

The procedure in [22] focuses on the parameter estimation of an MMPP(2) based on 
observational interarrival times. The method bases on iteration and is motivated by the 
maximum likelihood estimation. The method in [6] allows observational data of a process to be 
completely fitted to the distribution function of an SSMP(2). It is furthermore possible to fit the 
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first lag of the autocovariance function. This method assumes that the arrivals in state i occur 
according to a general process (not Poisson). The methods of [14] and [25] are similar. Both fit 
the mean arrival rate and the long term variance-to-mean ratio of the number of arrivals in 
(0, t) with t + co. Furthermore, [14] proposes to fit the variance to mean ratio and the third 
moment, both of the number of arrivals during a finite interval. [25] proposes to fit the 
covariance of the number of arrivals of two consecutive infinitely long time intervals and the 
squared coefficient of variation of the arrival times. The common goal of the four last 
procedures is that they propose to accurately fit the arrival process of a queueing system. 

The main goal in the fitting procedure in [l] is to fit the parameters of the MMPP(2), such 
that important effects of the queueing behaviour can be seen, e.g. cell loss versus buffer 
capacity, cell and burst scale behaviour. The procedure consists of splitting the superimposed 
traffic stream into an underload and an overload phase. During underload, the instantaneous 
arrival rate is smaller than the mean arrival rate. The definition of overload is analogous. It has 
been shown, [l, Fig. 11, that such a fitting procedure is more accurate than the former ones. 

In the following, we present a technique for approximating superimposed traffic streams to 
an SSMP(2). We assume that when the SSMP is in state x:.,i E (1, 21, arrivals occur according to 
a Poisson process of rate Ai. The modulator’s transition probabilities are defined as 

P = Pr(Y+, =21Y,=l) and q=Pr(Y,+,=lIY,=2). 

The aim of our fitting procedure is to fit the most relevant parameters, that means those which 
most decisively influence the performance of the queueing system. It can be shown [6] that such 
an SSMP(2) is equivalent to the MMPP(2). 

Let X denote the random variable characterizing the number of arrivals during one time 
slot. 
cell. 

A time slot is a fixed length interval. Its length is equal to the time it takes to transmit one 
For the considered SSMP(2) the following set of equations can easily be derived: 

a =p/4, (15) 

(A, - A2j2, a =p/4, (16) 

E[X3] = -2E[X] +3E[X2] t&h:+&), CY =p/q, (17) 

aqO)=E[X] + (Var[X] -E[X]). (18) 

Now we consider the statistical problem of fitting an SSMP(2) with Poisson arrivals, in the 
following called MMPP(2), to observational data; Let p(;lf) denote the nth moment of the 
observational data, a$ the sample variance and Q,(O) the spectral density at frequency zero. 
Techniques for measuring on-line such data are presented in [12]. The knowledge of the key 
parameters is of particular interest for testing performance and network behaviour of the 
B-ISDN. 

From Eqs. (16) and (18) a priori follows that observational data can only be matched 
accurately to an MMPP(2) if ~$2 $2 and Gx(0) r ~(2 respectively. The first restriction 
obviously comes from the assumption that arrivals occur for each state according to a Poisson 
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process. The second limitation is valid for all SSMPs with a two state modulator. Equation (18) 
is independent of the Poisson assumption, since the spectral density of any SSMP only depends 
on the modulator and the mean rate of each state. To summarize, relevant statistical parame- 
ters of observational data cannot always be matched to an MMPP(2) or even the more general 
SSMP(2). To demonstrate the relevance of the key parameters, found in the last section, we 
stick to the MMPP(2). The following proposition is useful when matching observational data to 
an MMPP(2). It gives a fundamental relationship between the transition probabilities p and q. 

Proposition. All the pairs of transition probabilities ( p, q) E S’ match the observed mean and the 
observed variance to an MMPP(2) where 

JY-= (p, q): 12p2qs20, s= 

i 

a; - py 
( P%y2 1 

and 

01q11 iff 05611, O<q<1/6 iff S>l. 

Proof. Define 

(19) 

Mu (p+4J2 J P4 
(Var[X] -E[X]), 

which is, due to Eq. (16), non-negative. Without loss of generality we assume that A, r A,. We 
then obtain from (16) 

A, =h,+M. (20) 

Finally, (15) yields 

h,=E[X] - q ----A420 
P+4 

(21) 

from which we obtain (19). q 

a) b) 

Fig. 2. Comparison of sets ti and 9’. For case (a) an empty intersection of .w’ and 9 is possible. In case (b) the 
intersection never becomes empty. 
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A further restriction for the choice of the pairs of transition probabilities is given by Eq. (18). 
Given that the observed mean and variance match with the MMPP(2), the observed spectral 
density at frequency zero can be matched as long as (p, 4) EL@ where 

Obviously, the set ti f-a? may be empty (see Fig. 21, which means that either mean and 
variance or the spectral density at frequency zero do not matched with the MMPP(2). In the 
case of ~2 w%’ # 6, the optimal (p, 4) can be found by e.g. minimizing 

I(@“]) -/.@ I*. 

To summarize, the algorithm for matching the key parameters of observational data to an 
MMPP(2) is given in the list below. 

Algorithm 
1. 
2. 
3. 

4. 

5. 

Determine the sets JY’ given by (19) and LB given by (22). 
If & f%? # fl goto 3, otherwise goto 4. 
Compute the optimal pair (p, q> based on (171, goto 5 (for the rates use the expressions (20) 
and (21)). 
Compute the optimal pair (p, q) such that the matching error between observed and 
theoretical spectral density becomes minimal. Remark: For an approximately minimal error 
choose the pair (p, q) EAI which has the smallest distance to the set ~8. 
Compute A, given by (21) and A, given by (20). 

Table 1 
Parameter choice for case study I 

Original 
u; = 1.56 

p(j) = 7 88 
. 

&(O) = 0.98735 

E[ X] = 0.8 

Fit to MMPP(2) 
1 
0.396 

A, = 1.92173 

A, = 0.122475 

Var[ X] = 1.56 

E[ X3] = 7.673 

C&(O) = 0.98735 

E[ X] = 0.8 

Var[ X] = 0.8 

E[ X3] = 3.232 

d,(O) = 0.8 

Poisson A=1 A, = 0.8 
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Table 2 
Parameter choice for case study II 

Original 

Fit to MMPP(2) 

Poisson A=1 

1 
0.432 

A, = 0.0001 

A, = 0.85 

A 3 = 0.025 

A, = 0.833 

A,=0 

A, = 0.3 

/.@ = 0.3 

u; = 0.459 

/.&$) = 1.277 

C&(O) = 0.340 

E[ X] = 0.3 

Var[ X] = 0.549 

E[ X3] = 1.275 

C&(O) = 0.3438 

E[ X] = 0.3 

Var[ X] = 0.3 

E[ X”] = 0.597 

&x(O) = 0.3 

4. Numerical examples 

In Tables l-3 and Figs. 3-5 numerical examples are given that demonstrate the relevance of 
the key parameters found in Section 2. In the examples we compute with the MBH algorithm 
the expected loss of the SSMP(2)/D/l/c. The appendix gives an overview on how to compute 
efficiently the SSMP(n)/G/l/c queueing system. We assume that the observational data will 

Table 3 
Parameter choice for case study III 

0.95 0 A, 
= 

50.0 

j&j = 0.505 

u; = 0.763 
Original 0.99989 lE-5 A, = 0.50 

0.95 0.05 = 
A, 

= 5.0 /.L$) 15.328 

$X(O) = 0.790 

E[ X] = 0.505 

Fit to MMPP(2) 9.1E-5 
0.049983 

A 1 = 0.500283 

A, = 52.386 

A, = 0.3 

Var[ X] = 0.763 

E[ X3] = 15.953 

&(O) = 0.790 

E[ X] = 0.505 

Var[ X] = 0.505 

E[ X3] = 1.399 

&(O) = 0.505 

Poisson A=1 
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0 20 40 60 80 100 

Queueing System Capacity 

Fig. 3. Expected cell loss versus queieing system capacity for case study I. 

be produced by an SSMP(3) with Poisson arrivals. We fit it with an MMPP(2) while matching 
the key parameters with the presented fitting algorithm. 

The comparison of the expected loss for the observational data (SSMP(3)) with the matched 
MMPP(2) shows that the proposed fitting guarantees good results. Hence, the relevance of the 
key parameters, found in Section 2, has been validated. 

Queueing System Capacity 

Fig. 4. Expected cell loss versus queueing system capacity for case study II. 
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0 20 40 60 80 100 

Queueing System Capacity 

Fig. 5. Expected cell loss versus queueing system capacity for case study III. 

5. Conclusions 

Firstly, we have considered the expected occupation and the expected loss of a finite queue 
during a busy period. This consideration has shown that the queueing behaviour strongly 
depends on three parameters, the so-called key parameters, which are the expected arrival rate, 
the expected service rate and the spectral density at the frequency zero of the difference 
between arrivals and service. This difference is supposed to be ergodic and wide sense 
stationary. A typical example of such a process is the SSMP. The motivation for using a SSMP 
for describing traffic has been given by a multimedia. Furthermore, the aggregation of ATM 
traffic can be described easily by such a process. The disadvantage is that the state space of the 
underlying Markov chain dramatically grows. To exploit the results about the key parameters of 
Section 2, we presented in Section 3 a method to fit the key parameters of observational data to 
a MMPP(2). The importance of the key parameters has been illustrated by some numerical 
examples, which make evident that only the key parameters have a relevant influence on the 
queueing behaviour. The use of the fitting algorithm is manifold, e.g., SSMPs with a tremen- 
dous state space can be reduced significantly, observational data can be fitted accurately. The 
computation time of the queueing problem with MMPP(2) batch arrivals is very short. The 
findings can serve as a framework for an engineering tool which allows approximate calculation 
of loss and delay jitter in an ATM network. The complete algorithm for solving the 
SSMP/G/l/ c is given in the appendix. Furthermore, the knowledge of the key parameters 
brings some basic and important insight for the parameter choice of the performance test and 
the end-to-end test of B-ISDN. 
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Appendix A 

In this appendix we outline a general algorithm for solving the SSMP/G/l finite capacity 
queue. A similar queueing problem is presented in [2], where the arrival law is a Markovian 
Arrival Process (MAP). The waiting time distribution of the SSMP/G/l queue with exponen- 
tial interarrivals in each state is presented in [9]. The finite capacity queueing problem with 
SMP arrivals and deterministic server can be found in [1.5]. In the context of this contribution 
we focus on buffer occupation and loss probability. The calculation of the waiting time 
distribution is straightforward. The presented method was pioneered by [5] and [13] and has 
been used successfully to solve a large number of stochastic queueing models. The results 
presented here are not new, the purpose of the presentation is to make this powerful tool 
available for a wider audience. 

The arrival process is supposed to be a Special Semi-Markov Process (SSMP) with batch 
arrivals. It is well suited for characterizing the arrivals to a queue of a statistical multiplexer. 
Our SSMP is similar to the Discrete-Time Batch Markovian Arrival Process (DBMAP) [3]. Due 
to the nature of an SSMP we suppose the time to be slotted, with the slot length equal to the 
time it takes to transmit one cell. Time slots are indexed by t. The arrivals of cells are 
modulated by an n-state discrete time Markov chain (modulator) with transition probabilities 
aij = Pr(Y,+ 1 =j I y = il. In the modulator’s state i, i E (1,. . . , n) cells are generated due to a 
general process pi. Let X, denote the number of cells that arrive during the interval [t - I, t). 
Let +ij denote the probability of having j cells given that the modulator’s state is i, more 
specifically 4ij = Pi-(X, =j I Y, = i). The interval [t - 1, t) is to be referred to as the tth slot. 

The queue itself is a single priority FCFS (First Come First Served) queue with a single 
server. The queueing system (queue plus server) consists of c places. The arrival of cells are 
assumed at the beginning of a slot. Any departure from the queuing system is assumed to take 
place at the end of a slot. 

Let N, denote the number of cells in the queueing system and R, the residual service time 
both at time t. The service times H are positive integer multiples of time slots and h,. = Pr(H 
= r). If N, = 0, R, is defined to be zero. Note that the triple-variate process {N,, R,, Y,) with 
state space 

({(m, r,j)Illmlc, llr<m,jE{l,..., n}}U{(O,O, j)l jE{l,..., n}}} 
forms a Markov chain. 

To obtain the difference equation of the occupation N, we follow [5] and [13] relating the 
probabilities at t + 1 to those at t. This leads to 

m 2 1: 

knR,=r+lnY,=slN,=OnY,=i) 
s=l \ k=l 

n(Xt=m-klY,=s)n(Y,+,=jlY,=s)) 
midm + 1 ,cI 

+ c Pr((N,=knR,=lnY,=slN,=OnY,=i) 
k=l 

n(x,=m-k+llY,=s)n(Y,+,=jlY,=s)n(H=r)) 
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n(Xt=mIr,=S)n(y,+,=jIy,=s)n(H=r)) ; 
i 

m = 0: 

pet+1 = 0 fl x+1 =jIN,=OnY,=i) 

= i {Pr((N,=lnR,=lnY,=slN,=OnY,=i)n(x~=o,Y,=s) 
s=l 

n(rt+l=Art=S)) 

When introducing the following notations: 

Pij(min{m, C), r, t + 1) = Pr(N, = min{m, c} nR, = r n Y, =j 1 No = 0 n Y. = i), 

Pij(O, t + 1) E Pr(N, = 0 n Y, =j ( No = 0 n Y. = i), 
the difference equation (Al) can be rewritten as follows: 

m 2 1: 

W) 

pij(min(m, C}, r, t + 1) = i 
min(m ,c) 

C PisCky r + 17 tMs,m-kasj s=l 
k=l 

min(m + 1 ,c) \ 

m = 0: 

+hr C Pisck, ‘9 t)4s,m-k+lasj +hrpiz(Op t)4smasj ; 
k=l I 

Pij(O, t + l) = k (Pis(l7 l? t, +Pis(OY t))4,,oa,j- (W 
s=l 

We assume the existence of the steady state probabilities for t + ~0, that means that the 
Markov chain is homogeneous and irreducible. Then we obtain 

m 2 1: 

!\;(Pij(min{m, C}, 6 t + 1)) 

=pj(min{m, C}, r) = L 
min{m ,c) 

C Ps(k, r + ‘)4s,m-kasj 
s=l k=l 

min(m + 1 ,c) \ 

+hr C PsCky 1)4s,m-k+lasj + hrPs(0)4smasj ; 
k=l I 

m = 0: 

!it (PiA t + l)) =Pj(O) = ii (PJl, 1) +p,(0))~,,,a,j. 
s=l 

644) 
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Taking t + 03 yields that (A4) becomes independent of the initial state of the Markov chain. 
In the following we assume the residual service time to be independent of the system 
occupation, that means for r 2 1: p&k, r) =pj(k)y, with 3: = Pr(R = r>. 
Remember that r 2 0 if at least one cell is in the queueing system and that CT= 13: = 1. (A41 
then becomes 

m 2 1: 

pj(min{m, c}) = k 
min(m, cl 

C Ps(k)+s,m-kusj(l -?I) 
s = 1 k=l 

min(m + 1 ,c) 

+ c Ps(k)~s,m-k+IasjY1 +Ps(‘)$smasj 
k=l 

m = 0: 

Pj(O) = 2 (YlPs(l) + ps("))4s,0asjo 
s=l 

Let 

x= (P,(O),. . . , P,(O), p,(l), . . . , IQ), . . . , fQmin{m cl>, . . . , g,(minIw cl)) 

denote the vector of the steady state probabilities and 

Q= 

'B, B, B, *-a B,_, LB, 
Ire 

Ho H, H2 ... II_, CH, 
lrc 

0 Ho H, *** H,_, c Hl 
l>C-1 (Ah) 

the transition matrix of the queueing system. With (A6), the set of equations (A5) can be 
written as X =X * Q. The blocks in the matrix Q are given as follows: 

(Bk)ij=U,j~ij, O<k<c-1 and l<i, j<n, 

c-1 

k=O 

Eajj- c (Hk)ij, lli, jln. 
k=O 

(A? 

Hence we have shown that the buffer state can be represented by a finite state Markov chain 
whose transition matrix is upper block-Hessenberg, namely, with no blocks below the one 
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parallel to the diagonal. For such matrices, the steady state probability vector X can be 
efficiently computed by the Markov Block-Hessenberg (MBH) algorithm [8] and [19]. Further- 
more, MBH delivers (based on X> the probability of the cell loss due to buffer overflow. 

The transition matrix Q consists of only 3c + 2 different blocks, where each is a substochastic 
matrix of dimension n X IZ (n is the number of states of the modulator). The key feature of the 
MBH algorithm is that it deals only with substochastic matrices. Therefore, it is numerically 
more stable than classical iteration methods such as Gauss-Seidel and overrelaxation. The 
computation time of the SSMP(2)/D/l/lOO queue using the MBH algorithm takes on an 
HP700 workstation less than 2 seconds. 

Remark: For a constant service time distribution D with Pr(H = l), we have y1 = 1. A typical 
example for such a service time distribution is the statistical ATM multiplexer. 
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