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Abstract—We present a model for predictive caching where
a shared cache is used to improve performance across a
grid. Unlike local caching mechanisms, shared, grid or cloud-
based caches incur high costs or latency associated with the
additional data transfer. Our proposed caching model, which
is dynamically optimized and constantly updated over time,
determines the optimal allocation of objects into the shared
cache, in such a way that the total cost or latency is minimized.
This is achieved by including in the caching algorithm design
measures of grid latency, data retrieval costs and a predictive
component based on the probability of cached objects being
requested in the near future.
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I. INTRODUCTION

Caching constitutes a fundamental mechanism for improv-
ing performance in a variety of networked computer systems
and applications. The importance of caching in a cloud or
grid environment has been highlighted by several researchers
[1], [2] and novel caching products such as Microsoft’s
Windows Azure Shared Caching service [3].

Recent research has focused on adaptive caching systems
where the caching algorithm changes dynamically with time
to improve performance [4], [5]. These methods aim to keep
both the cache contents and the caching algorithm itself up-
to-date over time.

We propose a self-adjusting caching method where the
caching algorithm dynamically adapts itself based on a
predictive model of the likelihood that objects in the cache
will be requested in the future. The algorithm is particularly
geared for grid or cloud environments, as it includes in its
design the additional costs associated with distributed cache
systems.

II. A PREDICTIVE CACHING MODEL FOR GRID-BASED
SYSTEMS

In the proposed model we assume that a grid of computers
accesses a database which uses a shared cache. One of
the key challenges in designing the cache management
algorithm is the increased cost of data transfers associated
with shared grid-based cache systems. In our model we
include these costs in the caching algorithm design, so these

costs affect the decision on which elements to include in the
cache and which to eject.

The mathematical model behind the cache updating al-
gorithm works in discrete time, and at each time period
the following optimization problem is updated and solved.
The solution of this mathematical model, presented below,
determines which elements to include in the cache for the
next period.

minimize
∑
i

c1ipixi + c2ipi(1− xi) + c3ixi (1)

subject to
∑
i

sixi ≤ C (2)

xi ∈ {0, 1}. (3)

The binary variable xi determines whether the object i will
be placed in the cache (xi = 1) or not (xi = 0). The
probabilities pi in the objective function (1) represent an
estimate of the probability that the object i will be requested
in the next time period. These probabilities are updated at
each time period which is achieved by looking past object
accesses and calculating the likelihood that each item will
be requested next. The parameters c1, c2 and c3 present the
various cost elements. In particular, c1i is the estimated cost
or latency of obtaining object i from the shared cache, c2t
is the cost object i directly from the data server and c3i is
the cost to place object i in the shared cache. The model
constraint (2) is that the total size si of all elements chosen
to be placed in the cache does not exceed C, the maximum
shared cache capacity.

The above model is similar to knapsack problems in
optimization [6] and can be easily solved using both exact
combinatorial optimization techniques or fast approximation
heuristics.

III. SIMULATION AND NUMERICAL EXPERIMENTATION

The proposed model was tested in a simulation environ-
ment. We compared the performance of a virtual shared
cache using the predictive caching model against an identical
setup which uses the least-recently-used (LRU) algorithm or
the least-frequently-used (LFU) algorithm. For comparison
reasons we also report on the performance of the Belady



optimal caching algorithm [8], which is the theoretical
(a posteriori) optimal caching method among algorithms
that cache the last requested object. In the course of the
simulation, we recorded the number of cache hits and the
cost per cache hit for each of these algorithms for cache
maintenance.

The data request sequence, consisting of 10,000 requests,
was randomly generated from a Zipf distribution with a Zipf
exponent γ = 1, 1.5, 2, 3 or 4. The remaining parameters
of the model were chosen as follows: the set of distinct data
objects that can be requested consisted of 100 objects, and
the size of each object was randomly chosen in the range
50–150. The cache capacity used was 1,000, so on average
around 10 objects will fit into the cache at each time.

The costs were based on the object size (with an added
random ‘noise’ in the range ±5%) but the following relation-
ship between the costs was used, based on assumptions used
in [7]: c1 = 50c2 and c2 = 100c3. The probabilities pi were
initialized to 1/100 and adjusted at each step according to
the frequency an object was requested in the previous steps.

The results of this preliminary computational experimen-
tation are shown in Table I. We note that the predictive
caching model results in up to 46% more cache hits com-
pared to LRU and up to 26% more cache hits compared to
the LFU algorithm. The cost per cache hit was also improved
by up to 43% and 30% compared to the LRU and LFU
algorithms respectively.

We observe that in some cases the predictive algorithm
outperforms the Belady algorithm; this is because Belady
is the theoretical optimal algorithm among those who cache
the last requested object. However, in a shared cache en-
vironment it is not always true that caching the last object
is optimal, if for example the object has a low probability
of being requested again and instead prefetching a different
object may be more beneficial.

IV. CONCLUSION

This paper presented a model for designing a shared cache
updating method, where the caching strategy is determined
by cost considerations of moving data across the network
and a predictive element of estimates on the probability
that a particular data request will be asked by grid users
in the near future. The caching strategy is modeled by an
optimization problem, the solution of which determines at
each time period the optimal allocation of objects into the
shared cache, in such a way so that the cost of caching and
expected cost of future data retrievals is minimized.

The proposed caching architecture will prove useful in
platforms such as remote datacenters where there is a sig-
nificant overhead associated with the operation of a shared
cache. In such cases, the performance of the cache can
be improved by adapting the traditional algorithms used
for the management of the cache in a way that takes
into consideration the associated overheads and dynamically

Table I
COMPARISON OF SHARED CACHING METHODS

Zipf workload Predictive LRU LFU Belady
with parameter γ
Cache hits
γ = 1 5748 3927 4551 6112
γ = 1.5 8320 7418 7466 8427
γ = 2 9516 9076 9008 9458
γ = 3 9957 9912 9805 9945
γ = 4 9990 9977 9952 9982
Cost per cache hit
γ = 1 154.3 271.5 221.3 138.7
γ = 1.5 66.9 87.9 86.8 65.1
γ = 2 62.9 70.3 71.6 63.6
γ = 3 39.8 40.4 42.0 40.0
γ = 4 59.2 59.4 59.9 59.4

adjust the cache mechanism to ensure the most useful objects
are cached.

In our experimental setup we observed an up to 46%
improvement in cache hits compared to the traditional LRU
and LFU algorithms and a similar improvement in the cost
per cache hit.

The next steps in this research on dynamic, self-adjusting
caching algorithms will include the implementation and
testing of the proposed framework in a real-user cloud
or grid environment, where the real-life performance and
potential of the caching framework will be more accurately
assessed.
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