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ABSTRACT

In this paper we bring closer computation of
consistency-based cardinality-minimal diag-
nosis and solving Max-SAT. We propose two
algorithms for translating between those:
(1) DroraMA (DIagnOsis-based algoRithm
for mAx-sat optiMizAtion) for translating
cardinality-minimal consistency based diag-
nosis to Max-SAT and (2) MERIDIAN (Max-
sat-basEd algoRIthm for DIAgNosis) for the
other way around. While the former ap-
proach has been studied, solving Max-SAT
instances with a diagnostic solver is, to the
best of our knowledge, novel. We con-
figure MERIDIAN with the Stochastic Lo-
cal Search (SLS) solvers from the UBCSAT
suite, perform extensive experimentation on
fault-models of the 7T4XXX/ISCAS85 cir-
cuits and compare the resulting optimality
to the one of the stochastic MBD algorithm
SAFARI. The results show that the optimal-
ity of SAFARI is up to several-orders-of-mag-
nitude better than that of the SLS-based
Max-SAT solvers. We configure DIORAMA
with SAFARI and experiment on instances
from the Max-SAT competitions. While
the performance of DIORAMA/SAFARI on
crafted Max-SAT problems is slightly worse
compared to UBCSAT, DIORAMA/SAFARI
outperforms at least several-orders-of-mag-
nitude all UBCSAT algorithms on small in-
dustrial Max-SAT instances.

1 INTRODUCTION

Model-Based Diagnosis (MBD) inference algo-
rithms for propositional diagnosis models have, in
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general, been created specifically for the diagno-
sis problem, e.g., GDE (de Kleer and Williams,
1987), and more recently SAFARI (Feldman et al.,
2010). These algorithms have been improved over
the years by taking advantage of properties of the
diagnosis problem, e.g., by focusing on the most
likely diagnoses (de Kleer, 1990), or using a no-
tion of continuity of the diagnosis space (Feldman
et al., 2010).

With regard to domain-independent problems,
significant progress has been made in developing
powerful solvers for the satisfiability (SAT) prob-

lem, e.g., (Gomes et al., 2007). This success has
prompted the use of SAT-solvers for many other
problems, such as planning (Castellini et al., 2003)
and circuit test-case generation (Iyer et al., 2003).
Using a SAT-solver for another (non-SAT) prob-
lem P entails rewriting P in SAT format; although
this rewriting process can increase the size of the
problem, the high efficiency of SAT solvers often
makes the rewriting process worthwhile.

MBD is a version of propositional abduction,
which is a more complex problem than SAT.
Hence, although one can make calls to a SAT
solver during the process of computing diagnoses
(e.g., SAFARI uses an incomplete SAT solver), one
cannot use a standard SAT solver directly for di-
agnostic inference. This article shows how one can
use an extension of the SAT problem, called Max-
SAT, to solve MBD problems.

Max-SAT is an optimization extension of SAT.
Given a formula ® in Conjunctive Normal Form
(CNF), a Max-SAT (Hoos and Stiitzle, 2004) so-
lution is a variable assignment that maximizes the
number of satisfied clauses in ® (in most cases of
interest ® is unsatisfiable, otherwise any variable
assignment which satisfies ® is also a Max-SAT so-
lution). In partial Max-SAT, some of the clauses
in ® are designated as hard, the others are “soft”.
A solution to the partial Max-SAT problem should
satisfy all “hard” clauses and maximize the number
of satisfied “soft” clauses. Similarly, in weighted



Max-SAT a weight is assigned to each clause in ®
and a solution maximizes the sum of the weights
of the satisfied clauses.

The contributions of this paper are as follows.
(1) We are the first to cast the Max-SAT prob-
lem as an MBD problem, for which we propose
an algorithm called DiIorRAMA (DIagnOsis-based
algoRithm for mAx-sat optiMizAtion). (2) We
show that DIORAMA /SAFARI outperforms the tra-

ditional UBCSAT (Tompkins and Hoos, 2005)
Max-SAT algorithms by at least two-orders-of-
magnitude on a class of industrial Max-SAT prob-
lems, even though it performs slightly worse than
Stochastic Local Search (SLS) Max-SAT algo-
rithms on crafted Max-SAT competition problems.
3) We propose an algorithm, called MERIDIAN
Max-sat-basEd algoRIthm for DIAgNosis), that
translates an MBD problem to a Max-SAT prob-
lem. (4) We empirically show that MERIDIAN
configured with traditional Max-SAT is less opti-
mal than specialized MBD solvers such as SAFARI
thereby revealing a large class of Max-SAT prob-
lems that expose continuous properties amenable
to greedy algorithms like DIORAMA /SAFARI.

2 RELATED WORK

MBD has resemblance to Max-SAT (Hoos and
Stiitzle, 2004) and we have conducted extensive
experimentation with both complete Max-SAT
(partial and weighted) and Max-SAT based on
Stochastic Local Search (SLS). Empirical evidence
shows that although Max-SAT can compute di-
agnoses in many of the cases, the performance
of Max-SAT degrades when increasing the circuit
size or the cardinality of the injected faults.

Fu and Malik (2006) construct a partial Max-
SAT algorithm that uses UNSAT cores provided
by SAT solvers. The algorithm of Fu and Malik
iteratively relaxes UNSAT cores until the CNF in-
put becomes satisfiable. The difference from their
approach and DIORAMA is that they do not ex-
plicitly use a diagnostic algorithm to find a single
minimal unsatisfiable core.

An interesting approach to solving Max-SAT is
proposed by de Givry, et al (2003) where they
cast a Max-SAT problem as a weighted constraint
satisfaction problem. On the other side, solving
the diagnosis problem as a COP (Constraint Op-
timization Problem) is well-known from Williams
and Ragno (2007).

On the side of solving diagnosis with Max-SAT,
Kutsuna et al. (2009) use a partial Max-SAT algo-
rithm to solve several diagnostic automotive prob-
lems. Similarly, Chen et al. (2009) use partial
Max-SAT to solve problems of debugging sequen-
tial circuits. All these approaches differ from ours
in that they solve specific diagnostic problems as
opposed to empirically studying the general per-
formance characteristics of Max-SAT and diagnos-
tic algorithms.

3 TECHNICAL BACKGROUND

A model of an artifact is represented as a proposi-
tional formula over some set of variables. We dis-
cern subsets of these variables as assumable and
observable.

Definition 1 (Diagnostic System). A diagnostic
system DS is defined as the triple DS = (SD,
COMPS, OBS), where SD is a propositional the-
ory over a set of variables V, COMPS C V|,
OBS C V, COMPS is the set of assumables, and
OBS is the set of observables.

Throughout this paper we assume that OBS N
COMPS = ) and SD p~L.

Not all propositional theories used as system de-
scriptions are of interest to MBD. For example,
models with ignorance of abnormal behavior are
also known as weak-fault models.

Definition 2 (Weak-Fault Model). A diagnostic
system DS = (SD, COMPS, OBS) belongs to the
class WFM iff for COMPS = {hq, ha,...,hy}, SD
is equivalent to (hy = F1)A(he = Fo)A.. A(hy, =
F,) and COMPSNV’ = (), where V" is the set of all
variables appearing in the propositional formulae
Fi, Fy, ... F,.

Modeling of faults makes the problem of comput-
ing diagnoses more complex (de Kleer et al., 1992),
but can increase the precision of a diagnostic algo-
rithm. Models that have knowledge of faults are
formalized below.

Definition 3 (Strong-Fault Model). A diagnostic
system DS = (SD, COMPS, OBS) belongs to the
class SFM iff SD is equivalent to (hy = Fi1) A
(_‘hl = F1)2) AN (hn = Fn,l) A (_‘hn = Fn72)
such that 1 <i,7 <n,k € {1,2}, {h;} € COMPS,
Fyjky is a propositional formula, and none of h;
appears in I} .

In this paper, in addition to WFM, we experi-
ment with stuck-at-zero (S-A-0) and stuck-at-one
(S-A-1) models. S-A-0 and S-A-1 are subclasses of
SFM (Feldman et al., 2009) in which the output
of a malfunctioning component is assumed either
LorT.

Definition 4 (Diagnosis). Given a diagnostic sys-
tem DS = (SD, COMPS, OBS), an observation «
over some variables in OBS, and a conjunction of
literals w, w is a diagnosis iff SD A a Aw L.

Given a conjunction of literals w we denote the set
of negative literals in w as Lit™ (w).

Definition 5 (Subset-Minimal Diagnosis). A di-

agnosis w< is defined as subset-minimal, if no

other diagnosis @<, &S # w<, exists such that
Lit™ (%) C Lit™ (wS).

In the MBD literature, a range of types of “pre-
ferred” diagnosis has been proposed. In the fol-
lowing definition we consider the important from
the practical perspective cardinality ordering.
Definition 6 (Cardinality-Minimal Diagnosis). A
diagnosis @< is defined as cardinality-minimal if
no other diagnosis @<, &S # &, exists such that

Lit™ (&%) < Lit™ (wS).



On the Max-SAT side we leave out all definitions
as there is an agreement in the literature. Note
that most SAT and Max-SAT solvers (as well as
many diagnostic solvers) accept SD in CNF only.
Any propositional formula can be converted to
CNF taking into consideration a number of com-
plexity and other issues (Feldman et al., 2010).

4 MBD FRAMED AS MAX-SAT

In this section we demonstrate the use of Max-SAT
for solving MBD problems.

4.1 A Max-SAT-Based MBD Algorithm

We propose an algorithm, called MERIDIAN (Max-
sat-basEd algoRIthm for DIAgNosis), for com-
puting cardinality-minimal diagnoses (see Def. 6).

MERIDIAN uses the approach of Sang et al. (2007)
for encoding Most Probable Explanation (MPE)
as Max-SAT. Computing MPE is identical to com-
puting a most-probable diagnosis in a more gen-
eral framework. Algorithm 1 computes diagnoses
by calling a Max-SAT oracle.

Note that the diagnostic problems we solve in
this paper can be translated to multiple optimiza-
tion problems which can be solved with SAT-based
methods (Giunchiglia and Maratea, 2006). The
Maximum Satisfiable Subset (MSS) problem, for
example, is dual to the Minimal Unsatisfiable Sub-
set problem (Bailey and Stuckey, 2005) and the
two can be solved with Max-SAT and Min-UNSAT
solvers, respectively (Liffiton and Sakallah, 2005).
From those, we have found preference in the
research community towards Max-SAT, and for

practical reasons we therefore compare SAFARI to
Max-SAT.

Algorithm 1 MERIDIAN: an algorithm for MBD
based on weighted Max-SAT

1: function MERIDIAN(DS, ) returns a set of
diagnoses
inputs: DS, diagnostic system
DS = (SD, COMPS, OBS)
«, term, observation
local variables: W, set of weight and
clause pairs
Q, set of diagnoses
w, diagnosis term
¢;, clause
h;, variable

for all ¢; € CLAUSES(SD) do
W — W U {0, ¢)

end for

for all h; € COMPS do
W — W U(1, h;)

end for

while w «— MAX-SAT(W) do
W — W U (o0, w)

10: Q—QUuw

11: end while

12: return 2

13: end function

Algorithm 1 adds a unit clause with weight 1 for
each assumable (line 6). The weight of each input
clause is set to a value greater than the number of
all assumables (line 3). The loop in lines 8 — 11
computes a diagnosis with a call to Max-SAT and
if a diagnosis exists, it is added to the result (line
10), and its negation is added to the original set of
clauses (line 9) to prevent subsequent computation
of the same diagnosis. Note that the negation of
a term is, conveniently, a clause.

Depending on the implementation of the MAX-
SAT call in line 8 of Alg. 1 we have a family of
MAX-SAT algorithms for diagnosis: (1) if MAX-
SAT is a partial Max-SAT solver, Alg. 1 computes
diagnoses ordered by cardinality; (2) if MAX-SAT
is a weighted Max-SAT solver, Alg. 1 computes
diagnoses ordered by probability; and (3) if MAX-
SAT is based on SLS, not every iteration of the
main loop yields a diagnosis. We have run exten-
sive experiments with all three Max-SAT variants,
which we describe in the following sub-sections.

4.2 Experimental Results with SLS
Max-SAT

In the experiments that follow we compare the
optimality of MERIDIAN configured with a num-
ber of SLS-based Max-SAT algorithms from the
UBCSAT suite (Tompkins and Hoos, 2005). We
compare the results to SAFARI, a state-of-the-art
stochastic MBD algorithm (Feldman et al., 2010).

The following issues complicate the use of SLS
Max-SAT in diagnostic algorithms:

e There is no simple termination criterion in di-
agnostic algorithms based on SLS Max-SAT,
i.e., we keep the local diagnosis and restart
SAFARI after a number of successive “unsuc-
cessful” flips, while there is no notion of “un-
successful” flip (from the viewpoint of diag-
nosis) in Max-SAT. As we will see from our
experimentation, flipping a variable which de-
creases the weight (or number) of currently
satisfied clauses may be necessary to escape
plateaus and/or local optima, hence the ac-
cumulation of such flips cannot be used as a
termination criterion;

e Diagnostic Max-SAT problems have two type
of constraints: hard and soft. The hard con-
straints are the clauses of the original (“nom-
inal”) model, while the soft constraints are
the unit clauses received from the assumable
variables. An SLS Max-SAT algorithm does
not distinguish between those hard and soft
clauses; if such an algorithm guaranteed the
satisfaction of the hard-constraints it would
be classified as hybrid and not stochastic.

These reasons make the use of algorithms based on
SLS Max-SAT problematic in practical diagnosis.
Despite that, we have conducted extensive experi-
mentation with UBCSAT in order to evaluate the
potential of SLS Max-SAT in MBD.

To overcome the termination problems with SLS
Max-SAT, for the following experiments, we have
chosen observations leading to known single faults.
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For each WFM we have chosen 50 observations.
We have configured the SLS Max-SAT search to
terminate after 100 000 variable flips and we have
modified Alg. 1 to terminate after 10 calls to Max-
SAT, this 10 runs. The resulting optimality of
algorithms based on SLS Max-SAT in computing
single fault diagnoses is shown in Table 1. We have
run experiments with all algorithms or algorithm
variants implemented by the UBCSAT suite, cov-
ering the algorithms RGSAT, Schéening, CDRW,
through GSAT.

The data in Table 1 show best cases. From
each of the 500 Max-SAT invocations per algo-
rithm /circuit (50 single faults, 10 runs per experi-
ment) we have (1) ignored all results which do not
satisfy all hard constraints, (2) recorded the best
diagnostic cardinality achieved in the hill climb-
ing (recall that these are single-faults hence the
best result is 1) and (3) recorded the number of
steps (bit flips) in which this best diagnostic car-
dinality was achieved (the number of bit-flips are
given in parentheses below the optimality number
in Table 1).

Table 1 shows the generally poor performance
of SLS Max-SAT algorithms. In most of the cases
the algorithm could either never satisfy all hard-
constraints or achieved increasingly worse cardi-
nality with the growth of the circuit. Exceptions
are the two variants of SAPS (Hutter et al., 2002)
and we attribute this relatively good optimality of
SAPS to its mechanism for assigning and updat-
ing weights to clauses based on the clause length.
Recall that in our diagnostic problems clauses of
assumable literals have unit weights while hard-
constraints have weights greater than the number
of assumable literals. Despite that, in the best
case for 7552, SAPS needed 77 264 bit flips to find
the optimal single-fault diagnosis. In comparison
SAFARI performed 11 bit flips, and although an
LTMS/SAT consistency check of SAFARI is strictly
more expensive than the consistency checking of
SLS Max-SAT (the former is worst-case NP-hard
while the latter is in P), SAFARI is computationally
more efficient on average.

Figure 1 illustrates the progress of two SLS
Max-SAT invocations. = The Conflict-Directed
Random Walk (CDRW) (Papadimitriou, 1991)
starts with a random variable assignment and flips
the most profitable (for increasing the satisfied
weight) variable. This often leads to violated hard-
constraints (due to flipping of non-assumable vari-
ables), and the restarts which are needed for es-
caping those situations lead to the relatively noisy
ascent of CDRW. Other SLS Max-SAT algorithms
like HSAT (Gent and Walsh, 1993) avoid down-
ward flips (flips which decrease the currently satis-
fied weight), quickly increasing the satisfied weight
but ultimately get stuck in local optima. A close
inspection of Fig. 1 reveals that HSAT oscillates
forever short of satisfying all hard constraints.

5 MAX-SAT FRAMED AS MBD

In what follows we discuss the use of MBD for
solving Max-SAT problems.

5.1 An MBD-Based Max-SAT Algorithm

Algorithm 2, called DiIoRAMA (DIagnOsis-based
algoRithm for mAx-sat optiMizAtion), shows a
very simple translation from a Max-SAT problem
in CNF to a diagnostic problem.

Algorithm 2 DIORAMA: an algorithm for Max-
SAT optimization based on MBD

1: function DIORAMA(®P) returns a term

inputs: ®, set of clauses
local variables: DS = (SD, COMPS,
OBS),

diagnostic system
¢;, clause
h;, variable

for all ¢; € ® do

COMPS «— COMPSU h;
end for
return MBD(DS, T)

end function

The loop in lines 2 - 4 of Alg. 2 modifies each
clause in the input problem ®. Note that line 3
adds exactly one literal to each input clause ¢; as,
given a clause ¢ = z; V2o V .-+ V z,, we have
h= (x1VaaV---Va,)=-hVriVzaV---Vz,
and the right-hand side of the last equivalence is
also a clause. Line 4 adds a total of |®| assumable
variables to |[COMPS| where |®| is the number of
clauses in ®.

Algorithm 2 always creates a system description
SD € WFM (cf. Def. 2). Note as well that Alg. 2
invokes the MBD oracle in line 6 with an empty
observation (for any propositional formula ® we
have DA T = ).

In a stricter paper one can formally show the
correctness of DIORAMA, i.e., one can prove that
Alg. 2 always computes an optimal Max-SAT so-
lution if it is configured with an MBD oracle that
computes at least one cardinality-minimal diag-
nosis. The complexity of DIORAMA is dominated
by the complexity of the Max-SAT solver. The
complexity of Alg. 2 is O(|®|) + ¥ where ¥ is the
complexity of the MBD oracle. We will, however,
leave this discussion short in order to provide more
extensive empirical evidence on the optimality of
DIORAMA.

5.2 Experimental Results with a
Stochastic MBD Oracle

In our first series of Max-SAT experiments we have
configured Alg. 2 with the stochastic MBD oracle
SAFARI (Feldman et al., 2010). SAFARI is an ap-
proximation-based algorithm and we have config-
ured it to compute guaranteed subset-minimal di-
agnoses (it cannot be configured to compute guar-
anteed cardinality-minimal diagnoses). These sub-
set-minimal diagnoses are used as an approxima-
tion to cardinality-minimal diagnoses. The result-
ing algorithm DIORAMA /SAFARI is similar to SLS-
based Max-SAT algorithms like the one discussed
in Sec. 4.2.
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Figure 1: Progress of two SLS Max-SAT algorithms in a weak-fault model of c432, single fault observation

Table 3: Optimality of the UBC SLS-based Max-SAT algorithms and SAFARI/DIORAMA on small in-

dustrial Max-SAT 2009 instances

c¢3  ¢b31d 6288 ¢7552 mot_combl mot_comb2 mot_comb3 15850
RGSAT 1215 526 440 647 531 1362 1758 3483
Schéening 1556 146 410 262 1 805 2534 6055
CDRW 1532 145 423 255 2 832 2533 6012
URW 4936 1098 1939 1520 1432 3654 6838 12093
SAMD 342 500 132 695 9 86 598 2175
IRoTS 261 78 86 86 24 83 436 1972
RoTS 347 129 130 122 5 108 565 2170
G2WSAT Novelty™ 237 13 99 54 1 4 544 2124
G2WSAT 206 16 101 60 1 3 484 2084
Adaptive Novelty " 238 38 106 64 1 184 522 2504
Novelty™ 339 13 111 66 1 49 800 3367
Novelty 314 16 121 63 1 46 769 3335
WalkSAT/TABU 368 24 129 84 1 676 810 2819
WalkSAT 555 21 177 94 1 27 1088 3281
HWSAT 351 417 123 547 4 66 579 2187
HSAT 354 498 130 798 18 116 576 2145
GSAT/TABU 354 98 126 98 7 147 589 2144
GWSAT 446 371 117 474 1 229 839 2629
GSAT 372 392 130 347 18 149 596 2191
DIORAMA/SAFARI 1 2 3 1 2 2 2 1

Table 2 compares the optimality of Dio-
RAMA/SAFARI to the algorithms from the UBC-
SAT suite. The experiments are on the problems
from the Second Max-SAT Evaluation 2007. The
majority of those problems (680 out of a total
of 815) are random 2-SAT! and 3-SAT. We have
configured UBCSAT to terminate after 100000
steps and we have run it 10 times for each exper-
iment. We can see in Table 2 that the optimality
of DIORAMA/SAFARI is slightly worse but com-
parable to the optimality of the UBCSAT algo-
rithms. In general, the optimality, of all UBCSAT
algorithms and DIORAMA /SAFARI is similar which
means that there are either (1) continuous diag-

nostic subspaces in the Max-SAT instances ? or (2)

'Recall that although the 2-SAT decision problem
is easy, the optimization Max-2-SAT problem is al-
ready NP-hard.

2See (Feldman et al., 2010) for defining continuity

the Max-SAT algorithms and DIORAMA/SAFARI
cannot climb after the initial variable assignment.

Table 3 shows the optimality of the UBCSAT
Max-SAT algorithms and DIORAMA/SAFARI on
the eight smallest instances of the Max-SAT 2009
industrial benchmark. The c3, ¢5315, c6288,
€7552, mot combl, mot comb2, mot comb3,
and s15850 columns in Table 3 correspond to the
c3 DD s3 fl el vl-bug-onevec-gate-0, ¢5315-
bug-gate-0, c6288-bug-gate-0, c7552-bug-gate-0,
mot_combl. red-gate-0, mot comb2. red-gate-
0, mot comb3. red-gate-0, and s15850-bug-
onevec-gate-0 instances in the Max-SAT bench-
mark. We can see that DIORAMA /SAFARI outper-
forms the traditional SLS-based algorithms by two
to three orders-of-magnitude. This is not surpris-
ing as the ¢5315, ¢6288, ¢7552 instances come from
the ISCAS85 benchmark and we have seen the

in MBD.



good performance of SAFARI on these instances in
Sec. 4. What is more interesting is that these re-
sults hold for other benchmark instances from for-
mal verification. s15850, for example, comes from
ISCAS89 and has 534 D-type flip-flops. Note that
all these problem instances result in solutions of
very small cardinality.

6 CONCLUSION

This paper offers extensive empirical research on
the use of consistency-based diagnosis for solving
Max-SAT problems and vice-versa. The main con-
tribution of this paper is solving more than 800
Max-SAT instances with DIORAMA/SAFARI and
UBCSAT and more than 700 74XXX/ISCAS85
problems with MERIDIAN/UBCSAT and SAFARI.
We have experimented with 20 algorithms for
SLS-based Max-SAT. The good result of Dio-
RAMA/SAFARI on small industrial instances show
that many Max-SAT problems of real-world im-
portance can be optimally and efficiently solved
with greedy stochastic algorithms.
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