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hABSTRACTIn this paper we bring 
loser 
omputation of
onsisten
y-based 
ardinality-minimal diag-nosis and solving Max-SAT. We propose twoalgorithms for translating between those:(1) Diorama (DIagnOsis-based algoRithmfor mAx-sat optiMizAtion) for translating
ardinality-minimal 
onsisten
y based diag-nosis to Max-SAT and (2) Meridian (Max-sat-basEd algoRIthm for DIAgNosis) for theother way around. While the former ap-proa
h has been studied, solving Max-SATinstan
es with a diagnosti
 solver is, to thebest of our knowledge, novel. We 
on-�gure Meridian with the Sto
hasti
 Lo-
al Sear
h (SLS) solvers from the UBCSATsuite, perform extensive experimentation onfault-models of the 74XXX/ISCAS85 
ir-
uits and 
ompare the resulting optimalityto the one of the sto
hasti
 MBD algorithmSafari. The results show that the optimal-ity of Safari is up to several-orders-of-mag-nitude better than that of the SLS-basedMax-SAT solvers. We 
on�gure Dioramawith Safari and experiment on instan
esfrom the Max-SAT 
ompetitions. Whilethe performan
e of Diorama/Safari on
rafted Max-SAT problems is slightly worse
ompared to UBCSAT, Diorama/Safarioutperforms at least several-orders-of-mag-nitude all UBCSAT algorithms on small in-dustrial Max-SAT instan
es.1 INTRODUCTIONModel-Based Diagnosis (MBD) inferen
e algo-rithms for propositional diagnosis models have, inThis is an open-a

ess arti
le distributed under theterms of the Creative Commons Attribution 3.0United States Li
ense, whi
h permits unrestri
ted use,distribution, and reprodu
tion in any medium, pro-vided the original author and sour
e are 
redited.

general, been 
reated spe
i�
ally for the diagno-sis problem, e.g., GDE (de Kleer and Williams,1987), and more re
ently Safari (Feldman et al.,2010). These algorithms have been improved overthe years by taking advantage of properties of thediagnosis problem, e.g., by fo
using on the mostlikely diagnoses (de Kleer, 1990), or using a no-tion of 
ontinuity of the diagnosis spa
e (Feldmanet al., 2010).With regard to domain-independent problems,signi�
ant progress has been made in developingpowerful solvers for the satis�ability (SAT) prob-lem, e.g., (Gomes et al., 2007). This su

ess hasprompted the use of SAT-solvers for many otherproblems, su
h as planning (Castellini et al., 2003)and 
ir
uit test-
ase generation (Iyer et al., 2003).Using a SAT-solver for another (non-SAT) prob-lem P entails rewriting P in SAT format; althoughthis rewriting pro
ess 
an in
rease the size of theproblem, the high e�
ien
y of SAT solvers oftenmakes the rewriting pro
ess worthwhile.MBD is a version of propositional abdu
tion,whi
h is a more 
omplex problem than SAT.Hen
e, although one 
an make 
alls to a SATsolver during the pro
ess of 
omputing diagnoses(e.g., Safari uses an in
omplete SAT solver), one
annot use a standard SAT solver dire
tly for di-agnosti
 inferen
e. This arti
le shows how one 
anuse an extension of the SAT problem, 
alled Max-SAT, to solve MBD problems.Max-SAT is an optimization extension of SAT.Given a formula Φ in Conjun
tive Normal Form(CNF), a Max-SAT (Hoos and Stützle, 2004) so-lution is a variable assignment that maximizes thenumber of satis�ed 
lauses in Φ (in most 
ases ofinterest Φ is unsatis�able, otherwise any variableassignment whi
h satis�es Φ is also a Max-SAT so-lution). In partial Max-SAT, some of the 
lausesin Φ are designated as hard, the others are �soft�.A solution to the partial Max-SAT problem shouldsatisfy all �hard� 
lauses and maximize the numberof satis�ed �soft� 
lauses. Similarly, in weighted1
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iples of DiagnosisMax-SAT a weight is assigned to ea
h 
lause in Φand a solution maximizes the sum of the weightsof the satis�ed 
lauses.The 
ontributions of this paper are as follows.(1) We are the �rst to 
ast the Max-SAT prob-lem as an MBD problem, for whi
h we proposean algorithm 
alled Diorama (DIagnOsis-basedalgoRithm for mAx-sat optiMizAtion). (2) Weshow that Diorama/Safari outperforms the tra-ditional UBCSAT (Tompkins and Hoos, 2005)Max-SAT algorithms by at least two-orders-of-magnitude on a 
lass of industrial Max-SAT prob-lems, even though it performs slightly worse thanSto
hasti
 Lo
al Sear
h (SLS) Max-SAT algo-rithms on 
rafted Max-SAT 
ompetition problems.(3) We propose an algorithm, 
alled Meridian(Max-sat-basEd algoRIthm for DIAgNosis), thattranslates an MBD problem to a Max-SAT prob-lem. (4) We empiri
ally show that Meridian
on�gured with traditional Max-SAT is less opti-mal than spe
ialized MBD solvers su
h as Safarithereby revealing a large 
lass of Max-SAT prob-lems that expose 
ontinuous properties amenableto greedy algorithms like Diorama/Safari.2 RELATED WORKMBD has resemblan
e to Max-SAT (Hoos andStützle, 2004) and we have 
ondu
ted extensiveexperimentation with both 
omplete Max-SAT(partial and weighted) and Max-SAT based onSto
hasti
 Lo
al Sear
h (SLS). Empiri
al eviden
eshows that although Max-SAT 
an 
ompute di-agnoses in many of the 
ases, the performan
eof Max-SAT degrades when in
reasing the 
ir
uitsize or the 
ardinality of the inje
ted faults.Fu and Malik (2006) 
onstru
t a partial Max-SAT algorithm that uses UNSAT 
ores providedby SAT solvers. The algorithm of Fu and Malikiteratively relaxes UNSAT 
ores until the CNF in-put be
omes satis�able. The di�eren
e from theirapproa
h and Diorama is that they do not ex-pli
itly use a diagnosti
 algorithm to �nd a singleminimal unsatis�able 
ore.An interesting approa
h to solving Max-SAT isproposed by de Givry, et al (2003) where they
ast a Max-SAT problem as a weighted 
onstraintsatisfa
tion problem. On the other side, solvingthe diagnosis problem as a COP (Constraint Op-timization Problem) is well-known from Williamsand Ragno (2007).On the side of solving diagnosis with Max-SAT,Kutsuna et al. (2009) use a partial Max-SAT algo-rithm to solve several diagnosti
 automotive prob-lems. Similarly, Chen et al. (2009) use partialMax-SAT to solve problems of debugging sequen-tial 
ir
uits. All these approa
hes di�er from oursin that they solve spe
i�
 diagnosti
 problems asopposed to empiri
ally studying the general per-forman
e 
hara
teristi
s of Max-SAT and diagnos-ti
 algorithms.

3 TECHNICAL BACKGROUNDA model of an artifa
t is represented as a proposi-tional formula over some set of variables. We dis-
ern subsets of these variables as assumable andobservable.De�nition 1 (Diagnosti
 System). A diagnosti
system DS is de�ned as the triple DS = 〈SD,
COMPS, OBS〉, where SD is a propositional the-ory over a set of variables V , COMPS ⊆ V ,
OBS ⊆ V , COMPS is the set of assumables, and
OBS is the set of observables.Throughout this paper we assume that OBS ∩
COMPS = ∅ and SD 6|=⊥.Not all propositional theories used as system de-s
riptions are of interest to MBD. For example,models with ignoran
e of abnormal behavior arealso known as weak-fault models.De�nition 2 (Weak-Fault Model). A diagnosti
system DS = 〈SD, COMPS, OBS〉 belongs to the
lassWFM i� for COMPS = {h1, h2, . . . , hn}, SDis equivalent to (h1 ⇒ F1)∧(h2 ⇒ F2)∧. . .∧(hn ⇒
Fn) and COMPS∩V ′ = ∅, where V ′ is the set of allvariables appearing in the propositional formulae
F1, F2, . . . , Fn.Modeling of faults makes the problem of 
omput-ing diagnoses more 
omplex (de Kleer et al., 1992),but 
an in
rease the pre
ision of a diagnosti
 algo-rithm. Models that have knowledge of faults areformalized below.De�nition 3 (Strong-Fault Model). A diagnosti
system DS = 〈SD, COMPS, OBS〉 belongs to the
lass SFM i� SD is equivalent to (h1 ⇒ F1,1) ∧
(¬h1 ⇒ F1,2) ∧ . . . ∧ (hn ⇒ Fn,1) ∧ (¬hn ⇒ Fn,2)su
h that 1 ≤ i, j ≤ n, k ∈ {1, 2}, {hi} ⊆ COMPS,
F{j,k} is a propositional formula, and none of hiappears in Fj,k.In this paper, in addition to WFM, we experi-ment with stu
k-at-zero (S-A-0) and stu
k-at-one(S-A-1) models. S-A-0 and S-A-1 are sub
lasses of
SFM (Feldman et al., 2009) in whi
h the outputof a malfun
tioning 
omponent is assumed either
⊥ or ⊤.De�nition 4 (Diagnosis). Given a diagnosti
 sys-tem DS = 〈SD, COMPS, OBS〉, an observation αover some variables in OBS, and a 
onjun
tion ofliterals ω, ω is a diagnosis i� SD ∧ α ∧ ω 6|=⊥.Given a 
onjun
tion of literals ω we denote the setof negative literals in ω as Lit

−(ω).De�nition 5 (Subset-Minimal Diagnosis). A di-agnosis ω⊆ is de�ned as subset-minimal, if noother diagnosis ω̃⊆, ω̃⊆ 6= ω⊆, exists su
h that
Lit

−(ω̃⊆) ⊂ Lit
−(ω⊆).In the MBD literature, a range of types of �pre-ferred� diagnosis has been proposed. In the fol-lowing de�nition we 
onsider the important fromthe pra
ti
al perspe
tive 
ardinality ordering.De�nition 6 (Cardinality-Minimal Diagnosis). Adiagnosis ω̃≤ is de�ned as 
ardinality-minimal ifno other diagnosis ω̃≤, ω̃≤ 6= ω̃≤, exists su
h that

Lit
−(ω̃≤) < Lit

−(ω≤). 2
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iples of DiagnosisOn the Max-SAT side we leave out all de�nitionsas there is an agreement in the literature. Notethat most SAT and Max-SAT solvers (as well asmany diagnosti
 solvers) a

ept SD in CNF only.Any propositional formula 
an be 
onverted toCNF taking into 
onsideration a number of 
om-plexity and other issues (Feldman et al., 2010).4 MBD FRAMED AS MAX-SATIn this se
tion we demonstrate the use of Max-SATfor solving MBD problems.4.1 A Max-SAT-Based MBD AlgorithmWe propose an algorithm, 
alledMeridian (Max-sat-basEd algoRIthm for DIAgNosis), for 
om-puting 
ardinality-minimal diagnoses (see Def. 6).Meridian uses the approa
h of Sang et al. (2007)for en
oding Most Probable Explanation (MPE)as Max-SAT. Computing MPE is identi
al to 
om-puting a most-probable diagnosis in a more gen-eral framework. Algorithm 1 
omputes diagnosesby 
alling a Max-SAT ora
le.Note that the diagnosti
 problems we solve inthis paper 
an be translated to multiple optimiza-tion problems whi
h 
an be solved with SAT-basedmethods (Giun
higlia and Maratea, 2006). TheMaximum Satis�able Subset (MSS) problem, forexample, is dual to the Minimal Unsatis�able Sub-set problem (Bailey and Stu
key, 2005) and thetwo 
an be solved with Max-SAT and Min-UNSATsolvers, respe
tively (Li�ton and Sakallah, 2005).From those, we have found preferen
e in theresear
h 
ommunity towards Max-SAT, and forpra
ti
al reasons we therefore 
ompare Safari toMax-SAT.Algorithm 1 Meridian: an algorithm for MBDbased on weighted Max-SAT1: fun
tion Meridian(DS, α) returns a set ofdiagnosesinputs: DS, diagnosti
 system
DS = 〈SD, COMPS, OBS〉
α, term, observationlo
al variables: W , set of weight and
lause pairs

Ω, set of diagnoses
ω, diagnosis term
ci, 
lause
hi, variable2: for all ci ∈ Clauses(SD) do3: W ←W ∪ 〈∞, ci〉4: end for5: for all hi ∈ COMPS do6: W ←W ∪ 〈1, hi〉7: end for8: while ω ←Max-SAT(W ) do9: W ←W ∪ 〈∞,¬ω〉10: Ω← Ω ∪ ω11: end while12: return Ω13: end fun
tion

Algorithm 1 adds a unit 
lause with weight 1 forea
h assumable (line 6). The weight of ea
h input
lause is set to a value greater than the number ofall assumables (line 3). The loop in lines 8 � 11
omputes a diagnosis with a 
all to Max-SAT andif a diagnosis exists, it is added to the result (line10), and its negation is added to the original set of
lauses (line 9) to prevent subsequent 
omputationof the same diagnosis. Note that the negation ofa term is, 
onveniently, a 
lause.Depending on the implementation of the Max-SAT 
all in line 8 of Alg. 1 we have a family ofMax-SAT algorithms for diagnosis: (1) if Max-SAT is a partial Max-SAT solver, Alg. 1 
omputesdiagnoses ordered by 
ardinality; (2) if Max-SATis a weighted Max-SAT solver, Alg. 1 
omputesdiagnoses ordered by probability; and (3) if Max-SAT is based on SLS, not every iteration of themain loop yields a diagnosis. We have run exten-sive experiments with all three Max-SAT variants,whi
h we des
ribe in the following sub-se
tions.4.2 Experimental Results with SLSMax-SATIn the experiments that follow we 
ompare theoptimality of Meridian 
on�gured with a num-ber of SLS-based Max-SAT algorithms from theUBCSAT suite (Tompkins and Hoos, 2005). We
ompare the results to Safari, a state-of-the-artsto
hasti
 MBD algorithm (Feldman et al., 2010).The following issues 
ompli
ate the use of SLSMax-SAT in diagnosti
 algorithms:
• There is no simple termination 
riterion in di-agnosti
 algorithms based on SLS Max-SAT,i.e., we keep the lo
al diagnosis and restartSafari after a number of su

essive �unsu
-
essful� �ips, while there is no notion of �un-su

essful� �ip (from the viewpoint of diag-nosis) in Max-SAT. As we will see from ourexperimentation, �ipping a variable whi
h de-
reases the weight (or number) of 
urrentlysatis�ed 
lauses may be ne
essary to es
apeplateaus and/or lo
al optima, hen
e the a
-
umulation of su
h �ips 
annot be used as atermination 
riterion;
• Diagnosti
 Max-SAT problems have two typeof 
onstraints: hard and soft. The hard 
on-straints are the 
lauses of the original (�nom-inal�) model, while the soft 
onstraints arethe unit 
lauses re
eived from the assumablevariables. An SLS Max-SAT algorithm doesnot distinguish between those hard and soft
lauses; if su
h an algorithm guaranteed thesatisfa
tion of the hard-
onstraints it wouldbe 
lassi�ed as hybrid and not sto
hasti
.These reasons make the use of algorithms based onSLS Max-SAT problemati
 in pra
ti
al diagnosis.Despite that, we have 
ondu
ted extensive experi-mentation with UBCSAT in order to evaluate thepotential of SLS Max-SAT in MBD.To over
ome the termination problems with SLSMax-SAT, for the following experiments, we have
hosen observations leading to known single faults.3
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Table1:Optim
alityofSLS-b
asedMax-SAT
Meridianand
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X
X
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M

sandthenum
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nparentheses)
inwhi
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iples of DiagnosisFor ea
h WFM we have 
hosen 50 observations.We have 
on�gured the SLS Max-SAT sear
h toterminate after 100 000 variable �ips and we havemodi�ed Alg. 1 to terminate after 10 
alls to Max-SAT, this 10 runs. The resulting optimality ofalgorithms based on SLS Max-SAT in 
omputingsingle fault diagnoses is shown in Table 1. We haverun experiments with all algorithms or algorithmvariants implemented by the UBCSAT suite, 
ov-ering the algorithms RGSAT, S
höening, CDRW,through GSAT.The data in Table 1 show best 
ases. Fromea
h of the 500 Max-SAT invo
ations per algo-rithm/
ir
uit (50 single faults, 10 runs per experi-ment) we have (1) ignored all results whi
h do notsatisfy all hard 
onstraints, (2) re
orded the bestdiagnosti
 
ardinality a
hieved in the hill 
limb-ing (re
all that these are single-faults hen
e thebest result is 1) and (3) re
orded the number ofsteps (bit �ips) in whi
h this best diagnosti
 
ar-dinality was a
hieved (the number of bit-�ips aregiven in parentheses below the optimality numberin Table 1).Table 1 shows the generally poor performan
eof SLS Max-SAT algorithms. In most of the 
asesthe algorithm 
ould either never satisfy all hard-
onstraints or a
hieved in
reasingly worse 
ardi-nality with the growth of the 
ir
uit. Ex
eptionsare the two variants of SAPS (Hutter et al., 2002)and we attribute this relatively good optimality ofSAPS to its me
hanism for assigning and updat-ing weights to 
lauses based on the 
lause length.Re
all that in our diagnosti
 problems 
lauses ofassumable literals have unit weights while hard-
onstraints have weights greater than the numberof assumable literals. Despite that, in the best
ase for c7552, SAPS needed 77 264 bit �ips to �ndthe optimal single-fault diagnosis. In 
omparisonSafari performed 11 bit �ips, and although anLTMS/SAT 
onsisten
y 
he
k of Safari is stri
tlymore expensive than the 
onsisten
y 
he
king ofSLS Max-SAT (the former is worst-
ase NP-hardwhile the latter is in P), Safari is 
omputationallymore e�
ient on average.Figure 1 illustrates the progress of two SLSMax-SAT invo
ations. The Con�i
t-Dire
tedRandom Walk (CDRW) (Papadimitriou, 1991)starts with a random variable assignment and �ipsthe most pro�table (for in
reasing the satis�edweight) variable. This often leads to violated hard-
onstraints (due to �ipping of non-assumable vari-ables), and the restarts whi
h are needed for es-
aping those situations lead to the relatively noisyas
ent of CDRW. Other SLS Max-SAT algorithmslike HSAT (Gent and Walsh, 1993) avoid down-ward �ips (�ips whi
h de
rease the 
urrently satis-�ed weight), qui
kly in
reasing the satis�ed weightbut ultimately get stu
k in lo
al optima. A 
loseinspe
tion of Fig. 1 reveals that HSAT os
illatesforever short of satisfying all hard 
onstraints.5 MAX-SAT FRAMED AS MBDIn what follows we dis
uss the use of MBD forsolving Max-SAT problems.

5.1 An MBD-Based Max-SAT AlgorithmAlgorithm 2, 
alled Diorama (DIagnOsis-basedalgoRithm for mAx-sat optiMizAtion), shows avery simple translation from a Max-SAT problemin CNF to a diagnosti
 problem.Algorithm 2 Diorama: an algorithm for Max-SAT optimization based on MBD1: fun
tion Diorama(Φ) returns a terminputs: Φ, set of 
lauseslo
al variables: DS = 〈SD, COMPS,
OBS〉,diagnosti
 system

ci, 
lause
hi, variable2: for all ci ∈ Φ do3: SD← SD ∧ {hi ⇒ ci}4: COMPS← COMPS ∪ hi5: end for6: return MBD(DS,⊤)7: end fun
tionThe loop in lines 2 - 4 of Alg. 2 modi�es ea
h
lause in the input problem Φ. Note that line 3adds exa
tly one literal to ea
h input 
lause ci as,given a 
lause c = x1 ∨ x2 ∨ · · · ∨ xn, we have

h⇒ (x1 ∨ x2 ∨ · · · ∨ xn) ≡ ¬h ∨ x1 ∨ x2 ∨ · · · ∨ xnand the right-hand side of the last equivalen
e isalso a 
lause. Line 4 adds a total of |Φ| assumablevariables to |COMPS| where |Φ| is the number of
lauses in Φ.Algorithm 2 always 
reates a system des
ription
SD ∈WFM (
f. Def. 2). Note as well that Alg. 2invokes the MBD ora
le in line 6 with an emptyobservation (for any propositional formula Φ wehave Φ ∧ ⊤ ≡ Φ).In a stri
ter paper one 
an formally show the
orre
tness of Diorama, i.e., one 
an prove thatAlg. 2 always 
omputes an optimal Max-SAT so-lution if it is 
on�gured with an MBD ora
le that
omputes at least one 
ardinality-minimal diag-nosis. The 
omplexity of Diorama is dominatedby the 
omplexity of the Max-SAT solver. The
omplexity of Alg. 2 is O(|Φ|) + Ψ where Ψ is the
omplexity of the MBD ora
le. We will, however,leave this dis
ussion short in order to provide moreextensive empiri
al eviden
e on the optimality ofDiorama.5.2 Experimental Results with aSto
hasti
 MBD Ora
leIn our �rst series of Max-SAT experiments we have
on�gured Alg. 2 with the sto
hasti
 MBD ora
leSafari (Feldman et al., 2010). Safari is an ap-proximation-based algorithm and we have 
on�g-ured it to 
ompute guaranteed subset-minimal di-agnoses (it 
annot be 
on�gured to 
ompute guar-anteed 
ardinality-minimal diagnoses). These sub-set-minimal diagnoses are used as an approxima-tion to 
ardinality-minimal diagnoses. The result-ing algorithmDiorama/Safari is similar to SLS-based Max-SAT algorithms like the one dis
ussedin Se
. 4.2. 5
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Table2:Opti
malityofUBC
SATalgorithm
sandDioram
a/Safariand
thenumbero
fsteps(inpa
rentheses)in
whi
hthisop
timalityhasb
een
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hard constraintsFigure 1: Progress of two SLS Max-SAT algorithms in a weak-fault model of 
432, single fault observationTable 3: Optimality of the UBC SLS-based Max-SAT algorithms and Safari/Diorama on small in-dustrial Max-SAT 2009 instan
es
3 
5315 
6288 
7552 mot_
omb1 mot_
omb2 mot_
omb3 s15850RGSAT 1 215 526 440 647 531 1362 1 758 3 483S
höening 1 556 146 410 262 1 805 2 534 6 055CDRW 1 532 145 423 255 2 832 2 533 6 012URW 4 936 1 098 1 939 1 520 1 432 3 654 6 838 12 093SAMD 342 500 132 695 9 86 598 2 175IRoTS 261 78 86 86 24 83 436 1 972RoTS 347 129 130 122 5 108 565 2 170G2WSAT Novelty+ 237 13 99 54 1 4 544 2 124G2WSAT 206 16 101 60 1 3 484 2 084Adaptive Novelty+ 238 38 106 64 1 184 522 2 504Novelty+ 339 13 111 66 1 49 800 3 367Novelty 314 16 121 63 1 46 769 3 335WalkSAT/TABU 368 24 129 84 1 676 810 2 819WalkSAT 555 21 177 94 1 27 1 088 3 281HWSAT 351 417 123 547 4 66 579 2 187HSAT 354 498 130 798 18 116 576 2 145GSAT/TABU 354 98 126 98 7 147 589 2 144GWSAT 446 371 117 474 1 229 839 2 629GSAT 372 392 130 347 18 149 596 2 191Diorama/Safari 1 2 3 1 2 2 2 1Table 2 
ompares the optimality of Dio-rama/Safari to the algorithms from the UBC-SAT suite. The experiments are on the problemsfrom the Se
ond Max-SAT Evaluation 2007. Themajority of those problems (680 out of a totalof 815) are random 2-SAT1 and 3-SAT. We have
on�gured UBCSAT to terminate after 100 000steps and we have run it 10 times for ea
h exper-iment. We 
an see in Table 2 that the optimalityof Diorama/Safari is slightly worse but 
om-parable to the optimality of the UBCSAT algo-rithms. In general, the optimality, of all UBCSATalgorithms and Diorama/Safari is similar whi
hmeans that there are either (1) 
ontinuous diag-nosti
 subspa
es in the Max-SAT instan
es 2 or (2)1Re
all that although the 2-SAT de
ision problemis easy, the optimization Max-2-SAT problem is al-ready NP -hard.2See (Feldman et al., 2010) for de�ning 
ontinuity

the Max-SAT algorithms and Diorama/Safari
annot 
limb after the initial variable assignment.Table 3 shows the optimality of the UBCSATMax-SAT algorithms and Diorama/Safari onthe eight smallest instan
es of the Max-SAT 2009industrial ben
hmark. The 
3, 
5315, 
6288,
7552, mot_
omb1, mot_
omb2, mot_
omb3,and s15850 
olumns in Table 3 
orrespond to the
3_DD_s3_f1_e1_v1-bug-oneve
-gate-0, 
5315-bug-gate-0, 
6288-bug-gate-0, 
7552-bug-gate-0,mot_
omb1._red-gate-0, mot_
omb2._red-gate-0, mot_
omb3._red-gate-0, and s15850-bug-oneve
-gate-0 instan
es in the Max-SAT ben
h-mark. We 
an see that Diorama/Safari outper-forms the traditional SLS-based algorithms by twoto three orders-of-magnitude. This is not surpris-ing as the 
5315, 
6288, 
7552 instan
es 
ome fromthe ISCAS85 ben
hmark and we have seen thein MBD. 7
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iples of Diagnosisgood performan
e of Safari on these instan
es inSe
. 4. What is more interesting is that these re-sults hold for other ben
hmark instan
es from for-mal veri�
ation. s15850, for example, 
omes from
ISCAS89 and has 534 D-type �ip-�ops. Note thatall these problem instan
es result in solutions ofvery small 
ardinality.6 CONCLUSIONThis paper o�ers extensive empiri
al resear
h onthe use of 
onsisten
y-based diagnosis for solvingMax-SAT problems and vi
e-versa. The main 
on-tribution of this paper is solving more than 800Max-SAT instan
es with Diorama/Safari andUBCSAT and more than 700 74XXX/ISCAS85problems with Meridian/UBCSAT and Safari.We have experimented with 20 algorithms forSLS-based Max-SAT. The good result of Dio-rama/Safari on small industrial instan
es showthat many Max-SAT problems of real-world im-portan
e 
an be optimally and e�
iently solvedwith greedy sto
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