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4 Haute Eole d'Ingénierie et de Gestion du Canton de VaudRoute de Cheseaux 1, CH-1401 Yverdon-les-Bains, Switzerlandstephan.robert�heig-vd.hABSTRACTIn this paper we bring loser omputation ofonsisteny-based ardinality-minimal diag-nosis and solving Max-SAT. We propose twoalgorithms for translating between those:(1) Diorama (DIagnOsis-based algoRithmfor mAx-sat optiMizAtion) for translatingardinality-minimal onsisteny based diag-nosis to Max-SAT and (2) Meridian (Max-sat-basEd algoRIthm for DIAgNosis) for theother way around. While the former ap-proah has been studied, solving Max-SATinstanes with a diagnosti solver is, to thebest of our knowledge, novel. We on-�gure Meridian with the Stohasti Lo-al Searh (SLS) solvers from the UBCSATsuite, perform extensive experimentation onfault-models of the 74XXX/ISCAS85 ir-uits and ompare the resulting optimalityto the one of the stohasti MBD algorithmSafari. The results show that the optimal-ity of Safari is up to several-orders-of-mag-nitude better than that of the SLS-basedMax-SAT solvers. We on�gure Dioramawith Safari and experiment on instanesfrom the Max-SAT ompetitions. Whilethe performane of Diorama/Safari onrafted Max-SAT problems is slightly worseompared to UBCSAT, Diorama/Safarioutperforms at least several-orders-of-mag-nitude all UBCSAT algorithms on small in-dustrial Max-SAT instanes.1 INTRODUCTIONModel-Based Diagnosis (MBD) inferene algo-rithms for propositional diagnosis models have, inThis is an open-aess artile distributed under theterms of the Creative Commons Attribution 3.0United States Liense, whih permits unrestrited use,distribution, and reprodution in any medium, pro-vided the original author and soure are redited.

general, been reated spei�ally for the diagno-sis problem, e.g., GDE (de Kleer and Williams,1987), and more reently Safari (Feldman et al.,2010). These algorithms have been improved overthe years by taking advantage of properties of thediagnosis problem, e.g., by fousing on the mostlikely diagnoses (de Kleer, 1990), or using a no-tion of ontinuity of the diagnosis spae (Feldmanet al., 2010).With regard to domain-independent problems,signi�ant progress has been made in developingpowerful solvers for the satis�ability (SAT) prob-lem, e.g., (Gomes et al., 2007). This suess hasprompted the use of SAT-solvers for many otherproblems, suh as planning (Castellini et al., 2003)and iruit test-ase generation (Iyer et al., 2003).Using a SAT-solver for another (non-SAT) prob-lem P entails rewriting P in SAT format; althoughthis rewriting proess an inrease the size of theproblem, the high e�ieny of SAT solvers oftenmakes the rewriting proess worthwhile.MBD is a version of propositional abdution,whih is a more omplex problem than SAT.Hene, although one an make alls to a SATsolver during the proess of omputing diagnoses(e.g., Safari uses an inomplete SAT solver), oneannot use a standard SAT solver diretly for di-agnosti inferene. This artile shows how one anuse an extension of the SAT problem, alled Max-SAT, to solve MBD problems.Max-SAT is an optimization extension of SAT.Given a formula Φ in Conjuntive Normal Form(CNF), a Max-SAT (Hoos and Stützle, 2004) so-lution is a variable assignment that maximizes thenumber of satis�ed lauses in Φ (in most ases ofinterest Φ is unsatis�able, otherwise any variableassignment whih satis�es Φ is also a Max-SAT so-lution). In partial Max-SAT, some of the lausesin Φ are designated as hard, the others are �soft�.A solution to the partial Max-SAT problem shouldsatisfy all �hard� lauses and maximize the numberof satis�ed �soft� lauses. Similarly, in weighted1



The 21st International Workshop on Priniples of DiagnosisMax-SAT a weight is assigned to eah lause in Φand a solution maximizes the sum of the weightsof the satis�ed lauses.The ontributions of this paper are as follows.(1) We are the �rst to ast the Max-SAT prob-lem as an MBD problem, for whih we proposean algorithm alled Diorama (DIagnOsis-basedalgoRithm for mAx-sat optiMizAtion). (2) Weshow that Diorama/Safari outperforms the tra-ditional UBCSAT (Tompkins and Hoos, 2005)Max-SAT algorithms by at least two-orders-of-magnitude on a lass of industrial Max-SAT prob-lems, even though it performs slightly worse thanStohasti Loal Searh (SLS) Max-SAT algo-rithms on rafted Max-SAT ompetition problems.(3) We propose an algorithm, alled Meridian(Max-sat-basEd algoRIthm for DIAgNosis), thattranslates an MBD problem to a Max-SAT prob-lem. (4) We empirially show that Meridianon�gured with traditional Max-SAT is less opti-mal than speialized MBD solvers suh as Safarithereby revealing a large lass of Max-SAT prob-lems that expose ontinuous properties amenableto greedy algorithms like Diorama/Safari.2 RELATED WORKMBD has resemblane to Max-SAT (Hoos andStützle, 2004) and we have onduted extensiveexperimentation with both omplete Max-SAT(partial and weighted) and Max-SAT based onStohasti Loal Searh (SLS). Empirial evideneshows that although Max-SAT an ompute di-agnoses in many of the ases, the performaneof Max-SAT degrades when inreasing the iruitsize or the ardinality of the injeted faults.Fu and Malik (2006) onstrut a partial Max-SAT algorithm that uses UNSAT ores providedby SAT solvers. The algorithm of Fu and Malikiteratively relaxes UNSAT ores until the CNF in-put beomes satis�able. The di�erene from theirapproah and Diorama is that they do not ex-pliitly use a diagnosti algorithm to �nd a singleminimal unsatis�able ore.An interesting approah to solving Max-SAT isproposed by de Givry, et al (2003) where theyast a Max-SAT problem as a weighted onstraintsatisfation problem. On the other side, solvingthe diagnosis problem as a COP (Constraint Op-timization Problem) is well-known from Williamsand Ragno (2007).On the side of solving diagnosis with Max-SAT,Kutsuna et al. (2009) use a partial Max-SAT algo-rithm to solve several diagnosti automotive prob-lems. Similarly, Chen et al. (2009) use partialMax-SAT to solve problems of debugging sequen-tial iruits. All these approahes di�er from oursin that they solve spei� diagnosti problems asopposed to empirially studying the general per-formane harateristis of Max-SAT and diagnos-ti algorithms.

3 TECHNICAL BACKGROUNDA model of an artifat is represented as a proposi-tional formula over some set of variables. We dis-ern subsets of these variables as assumable andobservable.De�nition 1 (Diagnosti System). A diagnostisystem DS is de�ned as the triple DS = 〈SD,
COMPS, OBS〉, where SD is a propositional the-ory over a set of variables V , COMPS ⊆ V ,
OBS ⊆ V , COMPS is the set of assumables, and
OBS is the set of observables.Throughout this paper we assume that OBS ∩
COMPS = ∅ and SD 6|=⊥.Not all propositional theories used as system de-sriptions are of interest to MBD. For example,models with ignorane of abnormal behavior arealso known as weak-fault models.De�nition 2 (Weak-Fault Model). A diagnostisystem DS = 〈SD, COMPS, OBS〉 belongs to thelassWFM i� for COMPS = {h1, h2, . . . , hn}, SDis equivalent to (h1 ⇒ F1)∧(h2 ⇒ F2)∧. . .∧(hn ⇒
Fn) and COMPS∩V ′ = ∅, where V ′ is the set of allvariables appearing in the propositional formulae
F1, F2, . . . , Fn.Modeling of faults makes the problem of omput-ing diagnoses more omplex (de Kleer et al., 1992),but an inrease the preision of a diagnosti algo-rithm. Models that have knowledge of faults areformalized below.De�nition 3 (Strong-Fault Model). A diagnostisystem DS = 〈SD, COMPS, OBS〉 belongs to thelass SFM i� SD is equivalent to (h1 ⇒ F1,1) ∧
(¬h1 ⇒ F1,2) ∧ . . . ∧ (hn ⇒ Fn,1) ∧ (¬hn ⇒ Fn,2)suh that 1 ≤ i, j ≤ n, k ∈ {1, 2}, {hi} ⊆ COMPS,
F{j,k} is a propositional formula, and none of hiappears in Fj,k.In this paper, in addition to WFM, we experi-ment with stuk-at-zero (S-A-0) and stuk-at-one(S-A-1) models. S-A-0 and S-A-1 are sublasses of
SFM (Feldman et al., 2009) in whih the outputof a malfuntioning omponent is assumed either
⊥ or ⊤.De�nition 4 (Diagnosis). Given a diagnosti sys-tem DS = 〈SD, COMPS, OBS〉, an observation αover some variables in OBS, and a onjuntion ofliterals ω, ω is a diagnosis i� SD ∧ α ∧ ω 6|=⊥.Given a onjuntion of literals ω we denote the setof negative literals in ω as Lit

−(ω).De�nition 5 (Subset-Minimal Diagnosis). A di-agnosis ω⊆ is de�ned as subset-minimal, if noother diagnosis ω̃⊆, ω̃⊆ 6= ω⊆, exists suh that
Lit

−(ω̃⊆) ⊂ Lit
−(ω⊆).In the MBD literature, a range of types of �pre-ferred� diagnosis has been proposed. In the fol-lowing de�nition we onsider the important fromthe pratial perspetive ardinality ordering.De�nition 6 (Cardinality-Minimal Diagnosis). Adiagnosis ω̃≤ is de�ned as ardinality-minimal ifno other diagnosis ω̃≤, ω̃≤ 6= ω̃≤, exists suh that

Lit
−(ω̃≤) < Lit

−(ω≤). 2



The 21st International Workshop on Priniples of DiagnosisOn the Max-SAT side we leave out all de�nitionsas there is an agreement in the literature. Notethat most SAT and Max-SAT solvers (as well asmany diagnosti solvers) aept SD in CNF only.Any propositional formula an be onverted toCNF taking into onsideration a number of om-plexity and other issues (Feldman et al., 2010).4 MBD FRAMED AS MAX-SATIn this setion we demonstrate the use of Max-SATfor solving MBD problems.4.1 A Max-SAT-Based MBD AlgorithmWe propose an algorithm, alledMeridian (Max-sat-basEd algoRIthm for DIAgNosis), for om-puting ardinality-minimal diagnoses (see Def. 6).Meridian uses the approah of Sang et al. (2007)for enoding Most Probable Explanation (MPE)as Max-SAT. Computing MPE is idential to om-puting a most-probable diagnosis in a more gen-eral framework. Algorithm 1 omputes diagnosesby alling a Max-SAT orale.Note that the diagnosti problems we solve inthis paper an be translated to multiple optimiza-tion problems whih an be solved with SAT-basedmethods (Giunhiglia and Maratea, 2006). TheMaximum Satis�able Subset (MSS) problem, forexample, is dual to the Minimal Unsatis�able Sub-set problem (Bailey and Stukey, 2005) and thetwo an be solved with Max-SAT and Min-UNSATsolvers, respetively (Li�ton and Sakallah, 2005).From those, we have found preferene in theresearh ommunity towards Max-SAT, and forpratial reasons we therefore ompare Safari toMax-SAT.Algorithm 1 Meridian: an algorithm for MBDbased on weighted Max-SAT1: funtion Meridian(DS, α) returns a set ofdiagnosesinputs: DS, diagnosti system
DS = 〈SD, COMPS, OBS〉
α, term, observationloal variables: W , set of weight andlause pairs

Ω, set of diagnoses
ω, diagnosis term
ci, lause
hi, variable2: for all ci ∈ Clauses(SD) do3: W ←W ∪ 〈∞, ci〉4: end for5: for all hi ∈ COMPS do6: W ←W ∪ 〈1, hi〉7: end for8: while ω ←Max-SAT(W ) do9: W ←W ∪ 〈∞,¬ω〉10: Ω← Ω ∪ ω11: end while12: return Ω13: end funtion

Algorithm 1 adds a unit lause with weight 1 foreah assumable (line 6). The weight of eah inputlause is set to a value greater than the number ofall assumables (line 3). The loop in lines 8 � 11omputes a diagnosis with a all to Max-SAT andif a diagnosis exists, it is added to the result (line10), and its negation is added to the original set oflauses (line 9) to prevent subsequent omputationof the same diagnosis. Note that the negation ofa term is, onveniently, a lause.Depending on the implementation of the Max-SAT all in line 8 of Alg. 1 we have a family ofMax-SAT algorithms for diagnosis: (1) if Max-SAT is a partial Max-SAT solver, Alg. 1 omputesdiagnoses ordered by ardinality; (2) if Max-SATis a weighted Max-SAT solver, Alg. 1 omputesdiagnoses ordered by probability; and (3) if Max-SAT is based on SLS, not every iteration of themain loop yields a diagnosis. We have run exten-sive experiments with all three Max-SAT variants,whih we desribe in the following sub-setions.4.2 Experimental Results with SLSMax-SATIn the experiments that follow we ompare theoptimality of Meridian on�gured with a num-ber of SLS-based Max-SAT algorithms from theUBCSAT suite (Tompkins and Hoos, 2005). Weompare the results to Safari, a state-of-the-artstohasti MBD algorithm (Feldman et al., 2010).The following issues ompliate the use of SLSMax-SAT in diagnosti algorithms:
• There is no simple termination riterion in di-agnosti algorithms based on SLS Max-SAT,i.e., we keep the loal diagnosis and restartSafari after a number of suessive �unsu-essful� �ips, while there is no notion of �un-suessful� �ip (from the viewpoint of diag-nosis) in Max-SAT. As we will see from ourexperimentation, �ipping a variable whih de-reases the weight (or number) of urrentlysatis�ed lauses may be neessary to esapeplateaus and/or loal optima, hene the a-umulation of suh �ips annot be used as atermination riterion;
• Diagnosti Max-SAT problems have two typeof onstraints: hard and soft. The hard on-straints are the lauses of the original (�nom-inal�) model, while the soft onstraints arethe unit lauses reeived from the assumablevariables. An SLS Max-SAT algorithm doesnot distinguish between those hard and softlauses; if suh an algorithm guaranteed thesatisfation of the hard-onstraints it wouldbe lassi�ed as hybrid and not stohasti.These reasons make the use of algorithms based onSLS Max-SAT problemati in pratial diagnosis.Despite that, we have onduted extensive experi-mentation with UBCSAT in order to evaluate thepotential of SLS Max-SAT in MBD.To overome the termination problems with SLSMax-SAT, for the following experiments, we havehosen observations leading to known single faults.3
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The 21st International Workshop on Priniples of DiagnosisFor eah WFM we have hosen 50 observations.We have on�gured the SLS Max-SAT searh toterminate after 100 000 variable �ips and we havemodi�ed Alg. 1 to terminate after 10 alls to Max-SAT, this 10 runs. The resulting optimality ofalgorithms based on SLS Max-SAT in omputingsingle fault diagnoses is shown in Table 1. We haverun experiments with all algorithms or algorithmvariants implemented by the UBCSAT suite, ov-ering the algorithms RGSAT, Shöening, CDRW,through GSAT.The data in Table 1 show best ases. Fromeah of the 500 Max-SAT invoations per algo-rithm/iruit (50 single faults, 10 runs per experi-ment) we have (1) ignored all results whih do notsatisfy all hard onstraints, (2) reorded the bestdiagnosti ardinality ahieved in the hill limb-ing (reall that these are single-faults hene thebest result is 1) and (3) reorded the number ofsteps (bit �ips) in whih this best diagnosti ar-dinality was ahieved (the number of bit-�ips aregiven in parentheses below the optimality numberin Table 1).Table 1 shows the generally poor performaneof SLS Max-SAT algorithms. In most of the asesthe algorithm ould either never satisfy all hard-onstraints or ahieved inreasingly worse ardi-nality with the growth of the iruit. Exeptionsare the two variants of SAPS (Hutter et al., 2002)and we attribute this relatively good optimality ofSAPS to its mehanism for assigning and updat-ing weights to lauses based on the lause length.Reall that in our diagnosti problems lauses ofassumable literals have unit weights while hard-onstraints have weights greater than the numberof assumable literals. Despite that, in the bestase for c7552, SAPS needed 77 264 bit �ips to �ndthe optimal single-fault diagnosis. In omparisonSafari performed 11 bit �ips, and although anLTMS/SAT onsisteny hek of Safari is stritlymore expensive than the onsisteny heking ofSLS Max-SAT (the former is worst-ase NP-hardwhile the latter is in P), Safari is omputationallymore e�ient on average.Figure 1 illustrates the progress of two SLSMax-SAT invoations. The Con�it-DiretedRandom Walk (CDRW) (Papadimitriou, 1991)starts with a random variable assignment and �ipsthe most pro�table (for inreasing the satis�edweight) variable. This often leads to violated hard-onstraints (due to �ipping of non-assumable vari-ables), and the restarts whih are needed for es-aping those situations lead to the relatively noisyasent of CDRW. Other SLS Max-SAT algorithmslike HSAT (Gent and Walsh, 1993) avoid down-ward �ips (�ips whih derease the urrently satis-�ed weight), quikly inreasing the satis�ed weightbut ultimately get stuk in loal optima. A loseinspetion of Fig. 1 reveals that HSAT osillatesforever short of satisfying all hard onstraints.5 MAX-SAT FRAMED AS MBDIn what follows we disuss the use of MBD forsolving Max-SAT problems.

5.1 An MBD-Based Max-SAT AlgorithmAlgorithm 2, alled Diorama (DIagnOsis-basedalgoRithm for mAx-sat optiMizAtion), shows avery simple translation from a Max-SAT problemin CNF to a diagnosti problem.Algorithm 2 Diorama: an algorithm for Max-SAT optimization based on MBD1: funtion Diorama(Φ) returns a terminputs: Φ, set of lausesloal variables: DS = 〈SD, COMPS,
OBS〉,diagnosti system

ci, lause
hi, variable2: for all ci ∈ Φ do3: SD← SD ∧ {hi ⇒ ci}4: COMPS← COMPS ∪ hi5: end for6: return MBD(DS,⊤)7: end funtionThe loop in lines 2 - 4 of Alg. 2 modi�es eahlause in the input problem Φ. Note that line 3adds exatly one literal to eah input lause ci as,given a lause c = x1 ∨ x2 ∨ · · · ∨ xn, we have

h⇒ (x1 ∨ x2 ∨ · · · ∨ xn) ≡ ¬h ∨ x1 ∨ x2 ∨ · · · ∨ xnand the right-hand side of the last equivalene isalso a lause. Line 4 adds a total of |Φ| assumablevariables to |COMPS| where |Φ| is the number oflauses in Φ.Algorithm 2 always reates a system desription
SD ∈WFM (f. Def. 2). Note as well that Alg. 2invokes the MBD orale in line 6 with an emptyobservation (for any propositional formula Φ wehave Φ ∧ ⊤ ≡ Φ).In a striter paper one an formally show theorretness of Diorama, i.e., one an prove thatAlg. 2 always omputes an optimal Max-SAT so-lution if it is on�gured with an MBD orale thatomputes at least one ardinality-minimal diag-nosis. The omplexity of Diorama is dominatedby the omplexity of the Max-SAT solver. Theomplexity of Alg. 2 is O(|Φ|) + Ψ where Ψ is theomplexity of the MBD orale. We will, however,leave this disussion short in order to provide moreextensive empirial evidene on the optimality ofDiorama.5.2 Experimental Results with aStohasti MBD OraleIn our �rst series of Max-SAT experiments we haveon�gured Alg. 2 with the stohasti MBD oraleSafari (Feldman et al., 2010). Safari is an ap-proximation-based algorithm and we have on�g-ured it to ompute guaranteed subset-minimal di-agnoses (it annot be on�gured to ompute guar-anteed ardinality-minimal diagnoses). These sub-set-minimal diagnoses are used as an approxima-tion to ardinality-minimal diagnoses. The result-ing algorithmDiorama/Safari is similar to SLS-based Max-SAT algorithms like the one disussedin Se. 4.2. 5
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hard constraintsFigure 1: Progress of two SLS Max-SAT algorithms in a weak-fault model of 432, single fault observationTable 3: Optimality of the UBC SLS-based Max-SAT algorithms and Safari/Diorama on small in-dustrial Max-SAT 2009 instanes3 5315 6288 7552 mot_omb1 mot_omb2 mot_omb3 s15850RGSAT 1 215 526 440 647 531 1362 1 758 3 483Shöening 1 556 146 410 262 1 805 2 534 6 055CDRW 1 532 145 423 255 2 832 2 533 6 012URW 4 936 1 098 1 939 1 520 1 432 3 654 6 838 12 093SAMD 342 500 132 695 9 86 598 2 175IRoTS 261 78 86 86 24 83 436 1 972RoTS 347 129 130 122 5 108 565 2 170G2WSAT Novelty+ 237 13 99 54 1 4 544 2 124G2WSAT 206 16 101 60 1 3 484 2 084Adaptive Novelty+ 238 38 106 64 1 184 522 2 504Novelty+ 339 13 111 66 1 49 800 3 367Novelty 314 16 121 63 1 46 769 3 335WalkSAT/TABU 368 24 129 84 1 676 810 2 819WalkSAT 555 21 177 94 1 27 1 088 3 281HWSAT 351 417 123 547 4 66 579 2 187HSAT 354 498 130 798 18 116 576 2 145GSAT/TABU 354 98 126 98 7 147 589 2 144GWSAT 446 371 117 474 1 229 839 2 629GSAT 372 392 130 347 18 149 596 2 191Diorama/Safari 1 2 3 1 2 2 2 1Table 2 ompares the optimality of Dio-rama/Safari to the algorithms from the UBC-SAT suite. The experiments are on the problemsfrom the Seond Max-SAT Evaluation 2007. Themajority of those problems (680 out of a totalof 815) are random 2-SAT1 and 3-SAT. We haveon�gured UBCSAT to terminate after 100 000steps and we have run it 10 times for eah exper-iment. We an see in Table 2 that the optimalityof Diorama/Safari is slightly worse but om-parable to the optimality of the UBCSAT algo-rithms. In general, the optimality, of all UBCSATalgorithms and Diorama/Safari is similar whihmeans that there are either (1) ontinuous diag-nosti subspaes in the Max-SAT instanes 2 or (2)1Reall that although the 2-SAT deision problemis easy, the optimization Max-2-SAT problem is al-ready NP -hard.2See (Feldman et al., 2010) for de�ning ontinuity

the Max-SAT algorithms and Diorama/Safariannot limb after the initial variable assignment.Table 3 shows the optimality of the UBCSATMax-SAT algorithms and Diorama/Safari onthe eight smallest instanes of the Max-SAT 2009industrial benhmark. The 3, 5315, 6288,7552, mot_omb1, mot_omb2, mot_omb3,and s15850 olumns in Table 3 orrespond to the3_DD_s3_f1_e1_v1-bug-oneve-gate-0, 5315-bug-gate-0, 6288-bug-gate-0, 7552-bug-gate-0,mot_omb1._red-gate-0, mot_omb2._red-gate-0, mot_omb3._red-gate-0, and s15850-bug-oneve-gate-0 instanes in the Max-SAT benh-mark. We an see that Diorama/Safari outper-forms the traditional SLS-based algorithms by twoto three orders-of-magnitude. This is not surpris-ing as the 5315, 6288, 7552 instanes ome fromthe ISCAS85 benhmark and we have seen thein MBD. 7



The 21st International Workshop on Priniples of Diagnosisgood performane of Safari on these instanes inSe. 4. What is more interesting is that these re-sults hold for other benhmark instanes from for-mal veri�ation. s15850, for example, omes from
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