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Abstract—Distributed data center architectures have been
recently developed for a more efficient and economical storage of
data. In many models of distributed storage, the aim is to store
the data in such a way so that the storage costs are minimized
and increased redundancy requirements are maintained. How-
ever, many approaches do not fully consider issues relating to
delivering the data to the end user and the associated costs that
this creates. We present an integer programming optimization
model for determining the optimal allocation of data components
among a network of Cloud data servers in such a way that the
total costs of additional storage, estimated data retrieval costs and
network delay penalties is minimized. The method is suitable for
periodic dynamic reconfiguration of the Cloud data servers, so
that the when localized data request spikes occur the data can
be moved to a closer or cheaper data server for cost reduction
and increased efficiency.

Index Terms—cache storage; grid computing; mathematical
programming.

I. INTRODUCTION

Distributed data centers in the Cloud constitute a recent
development aimed at increasing data availability, reducing
costs and taking advantage of economies of scale they offer.
The economics of Cloud data centers have been extensively
studied [1], [2], [3], [4] with the aim to reduce the infras-
tructure costs via economies of scale or efficient use of the
hardware infrastructure.

At the same time, mathematical modeling methods aiming
to make better use of distributed data centers have been devel-
oped, such as [5], [6], [7] who use combinatorial optimization
methods to determine the best allocation of virtual severs to
physical target servers, or virtual resources to actual physical
resources, all in an effort to reduce costs. This has been
followed by techniques targeting geo-optimization [8] where
the geographical location of the servers or customers are taken
into consideration when trying to optimize distributed Cloud
services.

We consider the problem of geo-distributed users accessing
data also located on geo-distributed Cloud data servers. We

provide a mathematical programming approach which deter-
mines whether data from one server should be temporarily
duplicated on another server which is located nearer to the
bulk of the customers currently requesting this data. In doing
so we can achieve better performance, indicated by a lower
‘cost’ in the model. This cost can represent many possible
metrics, such as low latency or genuine data transfer costs.

The inspiration for this approach comes from the area of
predictive caching [9], [10], [11] and its applicability to help
correct imbalances between where the data is stored and where
the users are located.

We begin by describing the underlying mathematical op-
timization model used to determine if cost savings can be
achieved by temporarily moving objects from one server to
another. This is followed by a demonstration of the potential
benefits using a synthetic workload simulation.

II. A MATHEMATICAL MODELING APPROACH FOR
OPTIMIZED DATA DELIVERY

In this section we present the mathematical model for the
data delivery and server configuration problem. The setup of
the model, described by an integer program, is as follows.

We consider D geographically dispersed data centers and
N also geographically dispersed users who are accessing data
from the servers. For simplicity, we assume that a total of K
data objects are held in the servers (for example, these can be
the K most frequently requested objects). Each object exists
in only one copy which is located in only one of the servers,
but the objects can have different sizes.

When a user requests a particular object, it will be fetched
from the sever which holds it at a cost of c units (for example,
the cost of latency or delay in retrieving the object, but this
cost can also vary for each server). In our experimentation we
assume that the main factor affecting the cost is the distance
between user and data center, although the method works for
any cost metric.



Our optimized data delivery framework operates as follows:
we assume that each data server has a small area of additional
storage where temporary copies of objects can be stored (in
essence, a cache storage space). The server can then decide,
for example, depending on the access pattern of the received
requests and/or the location of the users and in order to achieve
increased performance, to keep a local copy of some objects
which are located in other servers. So, if for example many
users in one geographical location frequently request objects
that are located far away, a local server may temporarily
duplicate these objects, so future requests for these objects
will be carried out at a smaller cost.

As with all predictive caching and prefetching models, a
key component is an estimation of the pattern of future user
requests so that the caching can be designed accordingly. In
our mathematical model the predictive element is described
by the probabilities puj which represent the probability of
a data object i will be requested by a user u in the near
future. In our experimentation we use a Zipf distribution fit to
estimate these probabilities from historic data. The choice of
the Zipf distribution is justified by the fact that this heavy tail
distribution is often present in the access patterns of real-life
user data requests [12], [13] and is also commonly used for
the generation of synthetic workload traces [9].

The objective of the mathematical model is to determine the
objects, if any, that need to be copied from one server to the
cache area of another, in such a way that the total expected
cost of delivering the data to the users is minimized. This set
of objects is determined by:

1) the probabilities of an object being requested by users
in a particular geographic location;

2) where the data are currently stored;
3) the relative cost difference of retrieving the objects from

their current location versus a closer location; and
4) the relative cost to copy the objects from one server to

another.
The integer programming model to optimize this operation is
shown below:

min

{
N∑

u=1

D∑
d=1

K∑
i=1

piucudxid +
D∑

d=1

K∑
i=1

Cidxid

}
(1)

subject to

K∑
i=1
i ̸=i∗

sixid ≤ Z, for all 1 ≤ d ≤ D (2)

D∑
d=1

xid ≥ 1, for all 1 ≤ i ≤ K (3)

xid ∈ {0, 1} (4)

The binary decision variables xid will take the value 1 if
the object i should be obtained from data center d, copying
it to the cache of d if necessary, and 0 otherwise. The cost

data cache

data center

users

data exchange

Fig. 1. Simulation setup.

cud represents the cost of obtaining an object from data center
d (e.g., the distance between the user u and the data center
d that holds i or a copy of i). The cost Cid denotes the
cost of copying data object i from its default server to data
server d; this cost will be zero if object i already exists on
that server. The first summation in (1) relates to the expected
(multiplied by the probability of object i being requested)
cost of retrieving the object from data center d. The second
summation relates to the cost of moving the objects between
data centers as necessary.

The constraint (2) specifies that the combined size si of all
the objects copied to data center d cannot exceed the capacity
Z of the server cache area. In the summation, however, we
must exclude objects i∗ that are physically located in data
center d, as it is not necessary to copy an object residing in a
data center to the cache of the same data center. The second
constraint (3) ensures that each object is available from at least
one data center.

The values of xid in the solution of this model will deter-
mine the data objects to duplicate across servers. We note that
the mathematical model is NP-hard and as a result the solution
time is expected to grow exponentially with the input param-
eters; therefore for arbitrarily large parameter values its use
would become impractical. Nonetheless, it can be of practical
use because (i) for reasonable values of the parameters (1000s)
the solution is obtained very quickly, generally in under a
second; (ii) the model input size can be kept small without
loss of applicability, for instance the number of users N can
represent groups of nearby users, or the data objects K can
denote the K most frequently requested objects; and (iii) the
model does not need to be solved live where a quick solution is
essential, but instead solved offline using recent access logs to
calculate a cost-reducing data exchange strategy to be applied
subsequently.



III. EXPERIMENTATION

A series of simulations were carried out to assess the
benefits of the proposed framework and the resulting cost
savings, where we compared the optimized data-exchange
method to retrieve the requested data objects against simply
obtaining the data from the server which owns them.

In the experimental testbed, we placed D data centers at
equal distances along the circumference of a circle, and N
users were placed randomly inside the circle. The costs were
then determined by the euclidean distance between the user
and each data center and between the data centers themselves
(Fig. 1). A set of K objects was generated and assigned at
random to one of the data centers.

The ranges of the parameter values used were as follows:
we used 3, 5 or 10 data centers; 20, 100, 500 or 1000 data
users; 100, 500 or 1000 data objects; and 1500 or 3000 for
the capacity of the cache for each server. The sizes of the
individual data objects were integers chosen uniformly in the
range 50–150.

A sequence of 2000 data requests was then generated
independently for each user. This was done using a Zipf
distribution, but for each user the order of the objects was
randomly permuted. So, for example, for user 1 object 1 may
be the most popular, followed by objects 2, 3, whereas for user
2, object 14 may be the most popular, followed by objects 6
and 35. A random Zipf distribution parameter between 1.0 and
3.0 was used for each user.

The algorithm first proceeds to fit a Zipf distribution, for
each user, based on a sequence of their first 1000 data requests
(representing the historic access pattern) using a maximum
likelihood estimation. This is done so that the Zipf parameter
is derived from the data, simulating a real-life implementation
scenario. We then use the probability distribution function to
calculate the values of the probabilities piu per user.

The simulation is carried out on the remaining 1000 data
requests per user. Each iteration begins with the optimization
step where the integer program is solved to determine the data
interchanges and then calculate the data retrieval costs in two
ways: directly from the original data server, or from a local
cache if the object has been duplicated. The cost of moving
data between servers is added on, regardless if the local copy
was eventually needed or not. Once a local cached copy was
created it can remain there at no additional cost, although in
practice, as with all caches, a mechanism to flag it as expired
would be required should the original object is modified.

We note that for single user it is always better to obtain
a data object directly rather than copying it to a local cache
and retrieving it from there (triangle inequality), but in the
presence of many users this is not true because the data is
only copied once but will benefit several users.

One could, if needed, adjust the probabilities piu during the
course of the simulation by recalculating them using a more
recent data request series. This was not needed as the access
pattern of our generated data did not vary with time.

IV. RESULTS

The simulation was implemented in Java using the IBM
ILOG CPLEX 12.4 library to solve the optimization model.

Tables I, II and III present the results of the computation
experimentation for 3, 5 and 10 data centers respectively. The
table columns denote, respectively, the number of users N ,
the number of data objects K, the capacity of the cache Z,
the total cost if data are retrieved from the default server
and the corresponding cost if data exchanges between servers
are allowed. The percentage difference between the two costs
is also reported. The last column denotes the total number
of times objects were moved between servers during the
simulation.

We note that the optimized method always yields a lower
cost than the default method, with a reduction varying from
54% to 98%, and the average percentage for 3, 5 and 10 data
centers being 80.6%, 79.8% and 80.8% respectively.

The instances with the smaller number of users showed the
largest variations in performance. This can be explained by the
fact that the user locations, data sequences and data-to-server
allocations were random and therefore, with a small number
of users, their location with respect to the servers containing
the objects they require can impact more on the data retrieval
costs and savings. When the number of users is large there is
less chance for extreme variations, but the cost savings are still
significant: a consistent cost reduction to 75–80% (a saving of
20–25%) is observed.

Overall, using the proposed method results in an average
reduction of the cost of around 20% compared to the default
data retrieval method.

V. FUTURE WORK

The optimization model for Cloud data center performance
improvement by dynamic data exchanges between the servers
presented is very flexible and can be used in a variety of setups.
However, more experimentation is required to determine what
the percent improvement will be on a real system. In our
analysis we used the distance between the user and server
as a measure of cost of the transfer, but in reality the cost
structure is more complex. Similarly, the user access patterns
may be more varied.

In the formulation of the mathematical model the decision
variables xid do not correspond to individual users. This means
that the optimal server to be used to retrieve a particular object
is determined by the location and costs of the users as a whole,
adjusted by the likelihood that each user will need this specific
data object.

Although it is possible to formulate the model—and obtain
better results—in a way that the decision-making is applied to
each user individually, this this would be impractical because
the number of decision variables would increase dramatically
resulting in a model that cannot be solved in reasonable time.
This will be possible however for small problem sizes.



TABLE I
NUMERICAL EXPERIMENTATION, 3 DATA CENTERS

users data cache cost cost objects
N K Z default optimized moved
20 100 1500 2226 2159 (97%) 1012
20 100 3000 2354 1740 (74%) 7933
20 500 1500 2290 1870 (82%) 7621
20 500 3000 2271 1634 (72%) 7732
20 1000 1500 2129 2012 (94%) 1447
20 1000 3000 2245 1558 (69%) 9014
100 100 1500 11267 10821 (96%) 6280
100 100 3000 11542 8392 (73%) 49190
100 500 1500 11143 8189 (73%) 44805
100 500 3000 11122 10348 (93%) 12835
100 1000 1500 11227 10999 (98%) 3325
100 1000 3000 11380 9170 (81%) 32062
500 100 1500 57746 41270 (71%) 241202
500 100 3000 57412 40832 (71%) 255437
500 500 1500 57017 47850 (84%) 139755
500 500 3000 58036 40264 (69%) 255339
500 1000 1500 57522 46847 (81%) 152667
500 1000 3000 56802 43545 (77%) 195552
1000 100 1500 112522 103347 (92%) 136965
1000 100 3000 112747 87779 (78%) 372329
1000 500 1500 113374 82852 (73%) 464904
1000 500 3000 114190 80713 (71%) 502346
1000 1000 1500 113463 79480 (70%) 497532
1000 1000 3000 112049 105924 (95%) 94292

overall average 80.6%

VI. CONCLUSION

An optimization approach for cost minimization when a
number of geo-distributed users retrieve data objects stored
in geo-distributed Cloud servers was presented. The mathe-
matical model determines if data objects residing in one server
need to be duplicated temporarily onto a temporary cache area
of another server which is located closer to the users currently
requesting the data. This is influenced by a set of data transfer
costs determined by the distance between users and servers
and between servers themselves, and a predictive component
which uses historic data access information to estimate the
likelihood that particular data objects will be needed in the
near future.

The performance of the optimized method was evaluated
in a series of simulations across a range of parameters using
synthetic workloads. The use of the optimized data retrieval
model resulted in an average cost improvement of around 20%
which is very promising, and further work is underway to
evaluate its merits in several real-life scenarios.

The proposed model is very flexible with a number of
adjustable parameters and can provide valuable information
about the locality of data requests and simple temporary data
duplication or caching measures that can improve performance
and reduce data transfer costs.
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