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Abstract

A Fast SRR Algorithm Based on

Recursive Least Square Estimation and Simultaneous Image Registration

by
Stéphane Kirchner

This thesis proposed a Super Resolution Reconstruction (SRR) algorithm based
on recursive least square estimation and simultaneous image registration. This
recursive least square estimation algorithm is computationally fast and effec-
tive, and the simultaneous image registration algorithm is more efficient for real
practical use. So this thesis will try to present the advantages by combining
these two algorithms into a single framework.

The thesis is structured into five main parts:

The first chapter introduces the super resolution reconstruction (SRR).

Later, the chapter 2 examines the super resolution reconstruction algo-
rithm using the stochastic regularization approach.

The chapter 3 reviews and examines three SRR algorithms using the
stochastic regularization approach (Classical SRR algorithm, Fast SRR
algorithm based on Recursive Least Square and SRR algorithm based
on Simultaneous Image Registration) and also the proposed algorithm
based on recursive least square estimation and simultaneous image regis-
tration.

The chapter 4 gives some experimental comparisons among different algo-
rithms.

And finally, the chapter 5 will give the conclusion and the future works
directions.
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Chapter 1

Introduction

There is great demand for high resolution images, and it continues to grow. It
is perfectly understandable why an image of high resolution (HR) is preferable
to an image of low resolution (LR) for a doctor who looks at a radiography.
And the fields are varied, from the visual pleasure of a HR image created by
a private camera to the HR images given by a drone where the best resolution
can provide details that may be crucial in choosing an intervention of the army.

The easiest way to increase the resolution is either to increase the pixels number
of the sensor, or to increase the pixel density on the sensor. In the first case,
increasing the sensor size causes an increase in capacitance (electronic capaci-
tance of the sensor) and therefore decrease the speed of transfer. Moreover, this
is contrary to the current policy of searching to miniaturize everything. For the
second solution, we have already reaches its limits. Indeed, by decreasing the
size of the sensors, the light received decreases as well. This brings up shoot
noise that reduces image quality. There is a limit of magnitude without too
great noise. This optimal size has already been reached [1].

Consequently, alternative approach for increasing the resolution is an image re-
construction that is more useful today. The idea of the image reconstruction is
that the acquisition of images can be seen as some degraded processes performed
on an original high resolution image (motion, added blur, down-sampling and
adding noise). Image reconstruction is to find the baseline image from images
of poor quality (filtering noise, up-sampling, removing blur and inverse motion).

There are two different uses of SRR:

e Reconstruction of a HR image from a LR image.

e Reconstruction of a HR image from multiple LR images of the same scene
(frames).



1.1 Objective

This thesis proposed a Super Resolution Reconstruction (SRR) algorithm based
on recursive least square estimation and simultaneous image registration. This
recursive least square estimation algorithm is computationally fast and effec-
tive, and the simultaneous image registration algorithm is more efficient for real
practical use. So this thesis will try to present the advantages by combining
these two algorithms into a single framework.

1.2 Thesis structure & scope

In this thesis, several image reconstruction algorithms using stochastic regular-
ization approach are reviewed. This thesis is not meant to use an exhaustive
list of the completed literature on image restoration, but take several of the im-
portant methods [2] [3]. It will describe each algorithm (and the proposed one)
and find out the advantages and weak points. Each algorithm will be used with:
”Laplacian Regularization”, "MRF (Markov Random Field) Regularization” [4]
and ”BTV (Bilateral Total Variation) Regularization” [4] (each with L1 and L2
norms estimation). It will compare them with different cases of inputs (one
or multi frames), different kind of images (different texture) and with different
kind of added noises. This work will only uses grayscale images.

This thesis is not going to compare the use of the regularization functions or
that of the norm estimations, but only give few examples of their uses. The
main purpose of the work is to compare the SRR algorithms.

Structure:
e This first chapter introduces the super resolution reconstruction (SRR).

e Later, the chapter 2 examines the super resolution reconstruction algo-
rithm using the stochastic regularization approach. This thesis will also
present three different regularization functions (Laplacian, Markov Ran-
dom Field and Bilateral Total Variation) and two norm estimations (L1
and L2) for it.

e The chapter 3 reviews and examines three SRR algorithms using the
stochastic regularization approach (Classical SRR, algorithm, Fast SRR
algorithm based on Recursive Least Square and SRR algorithm based
on Simultaneous Image Registration) and also the proposed algorithm
based on recursive least square estimation and simultaneous image regis-
tration.

e The chapter 4 also give some experimental comparisons among different
algorithms, the using regularization function and norm estimation choice.
These comparisons use several cases (different noises, one input image or
frames and the kind of texture of the image(s)).

e The chapter 5 gives the conclusion and the future works directions.

In Appendix A, a short presentation of the toolbox created for Matlab used in
the experimental comparisons will be given, and how to use it.



1.3 Introduction of SRR

The super resolution reconstruction techniques create a high resolution (HR)
image from a sequence of low resolution (LR) and noisy images (frames). This
is only possible because these LR images are aliased (they do not respect the
Shannon theorem and are sampled under the Nyquist rate [5]). Details of the
real scene are available in small parts in each LR frames. This thesis will work
with the method of super resolution reconstruction using stochastic regulariza-
tion approach. This method work in spatial domain and not as some methods
in frequency domain. The SRR has three main phases, the motion estimation,
the images (frames) fusion and the deblurring.

1.3.1 General Model for Image Acquisition

Image acquisition can be seen as blurring, down-sampling and noising that de-
grades the quality. A low resolution (LR) image Y can be see as:

Y = AX +¢ (1.1)

where X is the true high resolution (HR) image, A the wrap, blurring and
down-sampling operator and e the additive noise. The matrix A can also be
separate as:

A=DB (1.2)
or
A, = DBMj, (1.3)

where D represent the downsampling matrix and B the blurring matrix. My, is
a wrap matrix (translation, rotation, etc.) used in the general model for image
HR reconstruction with multiple LR images of the same scene (Y7,Ys, ..., Yy).
The matrices D and B can also be different for every LR image Yy (it will be
Dy, and By), but in this paper, the assumption that they are constant will be
used (it is mostly the case if acquired with an unique camera).
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Figure 1.1: General model for image acquisition.



1.3.2 Motion estimation

In fact, the motion of frames is usually unknown. The motion estimation is
about to find the motion informations between each frames and the reference
one, and this with an accuracy of sub-pixel. There are many motion model
of this estimation: only translation, translation with rotation and resizing or
motion estimation by parts (separate images into several parts with a motion
estimation for each parts). The first will be used for a simple scene shift, the
second for a case with for example a rotation of the camera when shooting, and
finally the last, for a case where several different parts (for example objects) in
the scene have different motions. For every kind of motion estimations, it exist
some algorithms to do it.

The experimental comparisons (chapter 4) use the displacement by translation
only. For this, it use a function called “dftregistration()” created by Manuel
Guizar [6]. This function is an efficient subpixel image registration by cross-
correlation.

1.3.3 Frames fusion

Once the motion estimation is done, it is therefore necessary to merge the LR
images into a HR image. The motion is with an accuracy of sub-pixel, so it is
necessary to interpolate the images before the fusion. This will be done with
well known methods such as bilinear, bicubic or spline interpolations. Then,
the images are merged. The interpolation and fusion is commonly called the
method of Shift-and-Add [7].

1.3.4 Deblurring

As seen in the general model for image acquisition (section 1.3.1), the LR images
are usually blurred. To remedy this, there are special filters (the Wiener filter for
example). But in the case of super resolution reconstruction by using stochastic
regularization approach, it is integrated in the mathematical process.



Chapter 2

Stochastic regularization
approach for SRR

A classical type of estimators for SRR algorithm is the ML-type estimators
[8] [9]. The SRR algorithm can be mathematically expressed as the following
minimization problem:

X = argmin(p(DBX —Y)) (2.1)
X
or
N
X = argmin(p Z(DBMkX -Yr)) (2.2)
X k=1

where p() is the norm estimation. To minimize this cost function, the recon-
struction image X have to be closely equal to the original image X (therefore
each pixel intensity of the reconstructed image is closely equal to each pixel
intensity of the original image). To compute it, we will use estimation of the
matrix B (assumptions about the blur). Better these assumptions are, better
the result will be. But this algorithm is an ill-posed problem, small noise in the
observed image Y will give large change in the result. Therefore, it is necessary
to add a regularization term in (2.1) and (2.2) as following;:

X = arg mm[(DBX —Y)+ A {TX}} (2.3)
X
N
X = arg min [Z(DBMkX — Vi) + A {TX}} (2.4)
k=1

where A is the regularization parameter (weighting the first term, the similarity
term, against the second, the regularization cost) and Y is the regularization
cost function. Moreover this function will improve the rate of convergence by
compensating the missing informations by some general prior information about
the desirable HR solution of the image X. This mathematical framework is



called SRR using stochastic regularization approach.

For the rest of the paper, equations will only be written for multi LR images as
input (general model for SRR).

2.1 The steepest descent method

The steepest descent method, also called the gradient descent method, is an
optimization algorithm that is usually used in the SRR frameworks. It finds
the minimum (or local minimum) of a function by using the gradient. Fig. 2.1
shows steps of the gradient descent algorithm for a two variables problem. The
algorithm follow the direction of the biggest gradient to go to the global mini-
mum (or at least the local minimum).

Figure 2.1: Tlustration of the gradient descent (image source: http://en.
wikipedia.org/wiki/Gradient_descent)

The SRR algorithm frequently used the steepest descent method in order to
determine its solutions, such as the solution of Eq. (2.4) can be mathematically
expressed as (written for the L2 norm estimation):

2

Xop1 =X+ 8- [Z (DT BT MF(DBM;X,, — Yi)) — -{(TTT)X,LH (2.5)
k=1



2.2 Norm estimation

The L1 and L2 norm (error norm) estimations are traditionally used as the fi-
delity term (or similarly term) in the steepest descent method (optimization).
L2 influence function goes faster and is more efficient than L1 norm, but with
high noised images, L2 norm has also more chance to have less good results
(local minimum instead the global minimum).

If the fidelity term is:

12 -6 1 9
1 -18 -1 -6

21 4 2 3 (2:6)
-8 -2 3 2
It become:

1 -1 1 1

I 1 -1 -1 -1
Fidelity_term_for_L1 = 1 1 1 1 (2.7)

-1 -1 1 1

12 -6 1 9
Fidelity_term_for_L2 = =18 1 -6 (2.8)

21 4 2 3
-8 -2 3 2

L1 takes only the signs of the values of the fidelity term while L2 take them as
they are.

It exists also many other norm estimations in the literature (L1-L2 hybrid norm,
Euclidean norm, Lq norm, L., norm, etc.), but they will not be used in this

paper.



2.3 Regularization term

The regularization functions work like a high-pass filter to improve the rate of
convergence by compensating the missing informations by some general prior
informations.

The following section will shortly describe the different regularization functions
used in this paper. It will also give the expressions used in the SRR algorithm
with a little difference: The given expressions will not be normalized, but they
are in the experimental comparisons (see section 4 for more information about
the normalization).

2.3.1 Laplacian

The Laplacian regularization function is a common high-pass filter. Y is then
replaced by a discrete Laplace operator (often used in image processing). It can
be given as convolution with the following kernel:

IR
r=g|t -8 1 (2.9)
1 1 1

By using the stochastic regularization approach for SRR, the steepest descent
method and the L1 and L2 norm estimation, the problem can be written as
follow:

Implementation with L1 norm:

N
X = argmin [Z IDBM; X — Y| + MIX}? (2.10)
X o

With the steepest descent method, the SRR solution can mathematically ex-
pressed as:

N
X1 = X0+ 8- [Z(DTBTM,{sign(DBMan V) = A {(FTF)XnH
k=1

(2.11)
Implementation with L2 norm:
X N
X = argmin {Z(DBM,CX AL {FX}ﬂ (2.12)

X4



With the steepest descent method, the SRR solution can mathematically ex-
pressed as:

Ko = [i DTBTMT(DBM, X, — Yz) —)\-{(FTF)Xn}] (2.13)
k=1

Eq. 2.11 and Eq. 2.13 are the equations used in the super resolution recon-
struction algorithms.

Example:

The next figure is an example of a Laplacian regularization term for a given
image:

Original image Regularization term (Laplacian)

Figure 2.2: Example of a Laplacian regularization term for a given image

10



2.3.2 Markov Random Field (MRF)

Markov Random Fields are a kind of statistical model [10]. They are widely
used for vision problems in digital image processing.

Implementation with L1 norm:

N
X = argmin[z |DBMpX — Yi| +
X =

3 paldX }] (2.14)

2BMRF =

With the steepest descent method, the SRR solution can mathematically ex-
pressed as:

N
Xps1=Xn+ 8- [Z(DTBTM,;F sign(DBM; X, — Y))

k=1
—A {Z @(di&)}} (2.15)
ceC

where p,, (-) is defined as:

’

o) =2z ;if pa(-) is a quadratic function (2.16)
’ 2z | T < T uber . . .
po () = { WM htuper - sign(z) } - }> Tiuber iif pa(-) is a Huber function

(2.17)

Implementation with L2 norm:

2BmRF ¢

Zpa dt X }} (2.18)

With the steepest descent method, the SRR solution can mathematically ex-
pressed as:

N
= argmin [Z (DBMpX — Yi)* + {
X o

N
K1 = Xn + 8- {Z (DT BT MT (DBM X, — Y))
k=1

- {Z p;(dszn)}} (2.19)

ceC

Eq. 2.15 and Eq. 2.19 are the equations used in the super resolution recon-
struction algorithms.

11



Example:

The next figure is an example of a MRF regularization term for a given im-
age:

Original image Regularization term (MRF)

Figure 2.3: Example of a MRF regularization term for a given image (MRF
temperature = 5)

12



2.3.3 Bilateral Total Variation (BTV)

BTV regularization is based on total variation (TV) criterion [11] and the bi-
lateral filter (see Appendix A).

Implementation with L1 norm:

N
X = argmin [Z |DBMi X — Yy|
X =

P P
+A { SN almi|x — S;S;”XH}] (2.20)
l=—— P m=0

With the steepest descent method, the SRR solution can mathematically ex-
pressed as:

N
Xnp1 =X, + 8- [Z(DTBTM,Z sign(DBMX,, — Y3))
k=1

—A- {Z Zalmw” (I—- SlSm) sign(Xn SlSmX Ho(2.21)

l=—P m=0

where operator matrices S! and Sy shift X by [ and m pixels in horizontal
and vertical directions, presenting several scales of derivatives. The scalar «
(0 < a < 1) is applied to give a spatially decaying effect to the summation of
the regularization term.

Implementation with L2 norm:

N
= argmin [Z (DBM;X — Yy)?
k=1

P P
+ )\{ Y3 el x S;s;”XH}} (2.22)

l=—P m=0

With the steepest descent method, the SRR solution can mathematically ex-
pressed as:

N
X1 = [Z (DTBTMT(DBM X, — Y3))
k=1

-\ {Z Zalm\ﬂll (I—SLS™) - sign(X, — SLSI"X,)}H|  (2.23)

l=—P m=0

Eq. 2.21 and Eq. 2.23 are the equations used in the super resolution recon-
struction algorithms.

13



Example:

The next figure is an example of a BTV regularization term for a given im-
age:

Original image Regularization term (BTV)

Figure 2.4: Example of a BTV regularization term for a given image (range of
neighbour pixels = 1, scalar weight = 0.7)

14



Chapter 3

Review of the SRR or
Super Resolution
Reconstruction algorithms

3.1 Classical SRR algorithm

For the first step of the SRR algorithm, the algorithm has to made a motion
estimation (Mp) between each frame and the first one (in sub-pixel accuracy).
The motion estimation will be used in the fidelity part of the SRR algorithm as
shown in the following figure. The next figure 3.1 is expression (2.5) with few
notes about the content:

Actuzl reconstruczd
image

Next racanstructed Weight of the steep

image
Stesp of the steepest descent method
e
.f‘_

.,
Xy =X, + 8- Z (DT BT MT (DBM,X,, — Y3)) — A- { (Y7T) ‘c}]
f. 1
, /
~" - Ty
Fidelity term I.-" Regularization term

v

Weight ofthe regularization
term =gainst the fidelity term

Figure 3.1: Expression (2.5) in details

The figure 3.2 shows the block diagram of the classical algorithm. The blocks F
and R represent the fidelity and regularization terms respectively (see fig. 3.1).
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F_1
B

\ 1/N

B

i F_N /j
Yy — 4
\
2

Initial 1 R

Update

Figure 3.2: Representation of the “Classical SRR algorithm” in block diagram

For the initial state of the steepest descent, the algorithm (in this work) use the
interpolation of the degraded image as the initial value of the SRR algorithm
or X; = resize(Y1). In the classical algorithm, Y7 is the reference image of
the LR frames. The motion estimation will first be estimated between every
frame and the reference frame, but the first frame Y3 (or the reference frame)
has no motion with the reconstructed image and, just by resize it (the algorithm
use “imresize” of the Image Processing Toolbox by MathWorks), it give a good
start point for the steepest descent method.

The registration process or the motion estimation is estimated from each de-

graded images that are low resolution and noisy hence. This registration infor-
mation is not accurate and its may degrade the SRR performance.
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3.2 Fast SRR algorithm based on Recursive Least
Square

This SRR algorithm works like the “Classical SRR algorithm” (3.1) but this
SRR algorithm is separated into 2 parts to be faster [7] [12] [13]:

e Data fusion (non iterative, Shift-and-Add method) and creation of the
blurred image Z = BX.

e Estimating the deblurred HR image X from Z (iterative method, similar
to the classical SRR algorithm).

But for this data fusion, the blur and decimation matrix have to be the same
for each degraded images (it is the case for frames created by one camera). This
robust data fusion gives the blurred version of the ideal image X . This removes
some operations in the steepest descent.

First, the algorithm computes the motion estimation between each frame and
the first one (in sub-pixel accuracy) as the classical SRR algorithm. With this
information, it use the Shift-and-Add method to create Z (resize to the final
size, motion & interpolation and finally, fusion of the frames).

The second part of the “Fast SRR algorithm based on Recursive Least Square”
(iterative deblurring) can be mathematically expressed as:

Xop1 = X+ 8- [(BT(BX — 2)) — A {(TTT)XnH (3.1)
1 T
W 1,5 -
E ] Motion estimation | Shift-and-Add Z =
E B £

Second stage (iterative)

Initial

Update

Figure 3.3: “Fast SRR algorithm based on Recursive Least Square”, in block
diagram representation

The initial state for the algorithm can be the blurred HR image (X; = Z).
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3.3 SRR algorithm based on Simultaneous Im-
age Registration

In the classical SRR framework, the motion estimation is most of the time not
precise (in larger part because the motion estimation is applied on degraded
LR images). Algorithm [14] tries to overcome this problem. So, when the
reconstruction is finished, it makes a new motion estimation between the re-
constructed image and other degraded frames to have a better estimation. If
this estimation is different than the current one (or not close enough), then it
will run again the SRR algorithm with the new motion estimations. And at the
end, it computes again the motion. The motion is estimate iteratively as the
SRR algorithm estimation until the motion estimation (j+1) is the same as the
motion estimation before (j), or close enough (as shown in figure 3.4).

Yo %
% ‘—b Classical X . N i ckon
i = f New motion estimation estimation
SRR algorithm different 7
Yy — ¢

YES

Start SRR algerithm again with the new motion estimation

Figure 3.4: Representation of the “SRR algorithm based on Simultaneous Image
Registration” in block diagram
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3.4 Proposed SRR algorithm Based on Recur-
sive Least Square Estimation and Simulta-
neous Image Registration

The proposed algorithm is based on the idea of the “Fast SRR algorithm based
on Recursive Least Square” (3.2) and the idea of the “SRR algorithm based on
Simultaneous Image Registration” (3.3). First it use the two parts same as the
“Fast SRR algorithm based on Recursive Least Square”:

e Data fusion (non iterative, Shift-and-Add method) and creation of the
blurred image Z = BX.

e Estimating the deblurred HR image X from Z (iterative method, similar
to the classical algorithm).

But for this data fusion, the blur and decimation matrix have to be the same
for each degraded images (it is the case for frames created by one camera). This
robust data fusion gives the blurred version of the ideal image X . This removes
some operations in the steepest descent.

First, the algorithm computes the motion estimation between each frame and
the first one (in sub-pixel accuracy) as the classical SRR algorithm. With this
information, it use the Shift-and-Add method to create Z (resize to the final
size, motion & interpolation and finally, fusion of the frames).

The second part of the “Fast SRR algorithm based on Recursive Least Square”
(iterative deblurring) can be mathematically expressed as:

X1 = X0+ 8- [(BT(BX — 2)) — A~ {(TTT))A(HH (3.2)

After, it makes a new motion estimation between the reconstructed image and
each input frames after the SRR is finished. The motion is estimated iteratively
until the motion estimation (j+1) is the same as the motion estimation before
(j), or close enough (see figure 3.5).

oY %

- =

Y — | Fast SRR algorithm based

Is the motion
estimation
different 7

Mew motion estimation

f,

on Recursive Least Square

YES

Start SRR algorithm again with the new motion estimation

Figure 3.5: Representation of the Proposed SRR algorithm Based on Recursive
Least Square Estimation and Simultaneous Image Registration in block diagram
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Chapter 4

Experimental results

For every SRR algorithms and for every kind of regularization term, A (weigh
of the regularization term again the fidelity term) will be normalized. So, the
weight of the regularization term for a SRR with one input image or multi
frames will be the same. The next expression is an example of the mathematical
modification for the normalization on the expression 2.13:

N
. - 1 - A
Kop1 = X+ 8- {Z (DT BTMI(DBMX,, — Y1) = A {(rTr)XnH
k=1
(4.1)
Several noises can be observed on real images (depend mostly on the capturing
method). So it is more than useful to simulate this noise to test the reaction of

an algorithm on a known added noise. The next noise cases will be used in all
the experimental comparisons:

Noise case | Type of noise
1 No noise
2 Gaussian noise, SNR = 35
3 Gaussian noise, SNR = 25
4 Gaussian noise, SNR = 15
) Poisson noise
6 Salt & Pepper noise, d = 0.015
7 Salt & Pepper noise, d = 0.030
8 Speckle noise, v = 0.01
9 Speckle noise, v = 0.03

Table 4.1: Noise cases used in the experimental comparisons (for Salt & Pepper,
d is the noise density, and for the Speckle noise, v is the variance)
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4.1 Description of the experimental comparisons.

Experimental comparisons for one input image

No | Name Objective

4.2.1 | Parameters for | To demonstrate the impact of the SRR parame-
the SRR ters on the steepest descent

4.2.2 | Rough estima- | To estimate the best parameters for the SRR
tion of the best | (such 8, A, etc) and the regularization function
SRR parameters | for different images and noise models

4.2.3 | Regularization To test the performance of different regularization
term functions with different image and noise cases

4.2.4 | Norm  estima- | To give the best choice between L1 and L2 norm
tion estimations for different cases

Experimental comparisons for multi-frame images (synthetic frames)
No | Name Objective

4.3.1 | Algorithms Experimental comparisons between algorithms to
experimen- analyse the performances in order to examine the
tal results (in | accuracy of the simultaneous registration algo-
qualitative rithm
measurement)

4.3.2 | Algorithms Somme examples of the results with the reviewed
experimen- algorithms and other SRR methods for compari-
tal results | son
(in  subjective
measurement)

4.3.3 | Computing Experimental comparisons between algorithms to
times analyse the computing time

Experimental comparisons for multi-frame images (real frames)
No | Name Objective

4.4.1 | The algorithm | How to find the best reconstructed image with-
of iterative | out the real image X (so when to stop the SRR
termination algorithm)
technique

4.4.2 | Experimental Analyse of the algorithm performances on real
comparisons on | frames
real frames set
No 1

4.4.3 | Experimental Analyse of the algorithm performances on real
comparisons on | frames by using the SRR algorithms on separate
real frames set | parts of the frames (with overlap)

No 2

Table 4.2: Table of the experimental comparisons
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4.2 Experimental comparisons for one input im-
age

This section will analyses the SRR results with one input image. The selected
images (all in grayscale) are:

e “Lena”, famous standard picture in image processing selected for its great
textures.

e “cameraman”, also a famous standard picture in image processing. Se-
lected for sharp edge between foreground and background.

e “alumgrns”, a grey scale image with less texture, and sharp edge between
the regions.

The reconstructions will be made with the “Classical algorithm” (section 3.1),
other algorithms have no interest for the case of one input image.

Original image ‘lena’ Original image “‘cameraman’

100 4 50

200 100
300 150

400 1 200

250 Es

500 5 : \
100 200 300 400 500 50 100 150 200 250

Original image "alumgrns’

Figure 4.1: Selected images for experimental comparison for one input image
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Figure 4.2 shows the chosen parts (will be the original HR image X for the SRR
algorithm) of the selected images:

Selected part for image ‘lena’ Selected part for image ‘cameraman’

Selected part for image "alumgrns’

Figure 4.2: Selected parts for experimental comparison for one input image
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The following figures illustrate the LR images Y created with the original HR
images X for the different cases of noise:

Y for case 1:
‘Original’ HR image X Mo noise Y for case 1 (interpolated)

10
20
30
40
20 40 20 40
Y for case 2: Y for case 3:
Gaussian noise SMR = 35 Y for case 2 (interpolated) Gaussian noise SNR =25

10 20 20 40

Y for case 4: Y for case &:
Gaussian noise SNR =15 Puoisson noise

10 20 20 40

Y for case 6: Y for case 7:
Salt and Pepper noise d =0.0156 Y for case 6 (interpolated)  Salt and Pepper noise d = 0.030 Y for case 7 (interpolated)

10 20

Y for case &:
Speckle noise v=0.01

Y for case 9:
Speckle noise v=0.03

10 20

Figure 4.3: LR images (Y) created with the lena image for experimental com-
parisons for one input image and the corresponding interpolations (bicubic)

24



‘Original’ HR image X

Y for case 2

Gaussian noise SMR = 35
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Y for case 4:

Gaussian noise SMR =15

Y for case 6:
Salt and Pepper noise d = 0.015

5
10
15
20
10 20

Y for case 8:
Speckle noise v=0.01

5
10
15
20
10 20

Y for case 2 (interpolated)

10
20
30
40
20 40

Y for case 4 (interpolated)

Y for case 6 (interpolated)

10
20
30
40

20 40

Y for case 8 (interpolated)

Salt and Pepper noise d = 0.030

Y for case 1
No noise

Y for case 1 (interpolated)

10
20
30
40

Y for case 3 (interpolated)

10
20
30
40

Y for case 5 (interpolated)

10 20

Y for case 3:
Gaussian noise SNR =25

Y for case &:
Poisson noise

Y for case 7:
Y for case 7 (interpolated)

5
10
15
20

10 20

Y for case 9:

Speckle noise v=0.03 Y for case 9 (interpolated)

5
10
15
20

Figure 4.4: LR images (Y) created with the cameraman image for experimental
comparisons for one input image and the corresponding interpolations (bicubic)
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‘Original’ HR image X
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Y for case 9:
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W

Figure 4.5: LR images (Y) created with the alumgrns image for experimental
comparisons for one input image and the corresponding interpolations (bicubic)
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4.2.1 Parameters for the SRR

Every parameters (both Super Resolution Reconstruction algorithm parameters
and regularization function parameters) had to change with the kind of the im-
age, noise models and the noise power, therefore there is no proposed algorithm
to determine the best parameters exactly.

An example of the impact of the SRR parameters (Laplacian regularization)

in the SRR performance using the steepest descent is shown in the next figure
(cameraman image with added Poisson noise).

LAP SRR (L1): Y added with Poisson noise

15.85

15.8

16.75

157

PSNR between the original and the reconstruced X

15 65
—E=107-01
— —B=10,2-05 .

1560 | oo el N ~ g

B=07.7=0.1 N -

— — B=07.2=05 ~

1568 | ——B=07.2=10 N ~ ]
— —B=10.2=10 b -

15.5 I I I I I s

0 1 2 3 1 5 5 7 B

lteration

Figure 4.6: Example of the impact of the SRR parameters

Experimental analysis

The graph (fig. 4.6) shows how the choice of parameters is important (both
and A). This concerns only the parameters related to the SRR algorithm and
not the regularization function which has also to be chosen. A wrong choice
may give a poor performance, which might have been avoided with an another
choice of parameters. Therefore, the next section present hoe to choose the best
parameters.
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4.2.2 Rough estimation of the best SRR parameters

Some simulations were used to have a rough estimation of the best parameters
for the SRR algorithm. These simulations used the input image (one frame) of
section 4.2. It computes the classical SRR algorithm by varying different steps
B (from 0 to 1 by 0.1 steps), weight of the regularization A and regularizations
parameters. The best given parameters would be a good start to find the optimal

parameters in each of the experimental comparisons.

Noise case 1 2 3 4 5 6 7 8 9
Signal/Noise [dB] || oo | 35 | 25 | 15 | 22 | 185 | 17.5 | 20 | 15.5
LAP B 0.8 | 0.9 0.9 ] 0.9 1 0.8 | 0.7] 0.2

A 0 0 [01]03]01] 0.1 0.1 [ 0.1] 0.8

I} 1 1 10902107 1 1 1 0.1
MRF X 01]02|01]05]|01]| 0.1 0.1 | 0.1 1

temp 15 | 13 | 10 5 6 5 5 5 5

8 05105050505 | 05 | 05 [05] 0.5

A 0 0 [01]02|01] 02 1] 01 |01 01
BTV Ksize 1 1 1 5 1 1 1 1 4

s. weight 0 0 0 [07]]03] 02| 05 |09 0.8

Table 4.3: Rough estimation of the best parameters for the lena image

Noise case 1 2 3 4 5 6 7 8 9
Signal/Noise [dB] || oo | 35 | 25 | 15 | 21.5 | 22 | 14 | 20.5 | 15.5
I} 1 1 |07 0.9 1 |09 1 0.8
LAP A 0 0 0 /01| 01 |01]01] 01 0.9
I3 1 0.9 1 0.9 1 1 1 0.9 1] 0.9 0.2
MRF A\ 01(]03(02|01] 02 01]01] 01 0.6
temp 17 | 16 | 16 | 11 14 14 | 10 15 5
153 05|/05|105|05| 05 |05]|05]| 0.5 0.5
A 0 0 0 | 0.2 0 0 | 0.1 0 0.5
BTV Ksize 1 1 1 1 1 1 1 1 1
s. weight 0 0 0 0 0 0 0 0 0

Table 4.4: Rough estimation of the best parameters for the cameraman image
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Noise case 1 2 3 4 5 6 7 8 9
Signal/Noise [dB] || oo | 35 | 25 | 155 | 225 | 19 | 15 | 20 | 15.5
153 091 1 1 0.4 0.6 1 1 108 1
LAP A 0 0 | 0.6 1 1 011061 1 0.4
8 1 10602 0.1 0.1 1 1 (01| 0.1
MRF X 02102105 1 1 0.1 1]0.1 1 1
temp 16 | 13 5 5 5 5 5 5 5
8 050504 04 03 [05]05|04] 04
A 0 [0.1]02] 0.2 02 | 01]01]02]| 02
BTV Ksize 1 1 1 5 3 4 5 3 5
s. weight 0 0 1 0.8 0.7 | 08]09]|08]| 0.8

Table 4.5: Rough estimation of the best parameters for the alumgrns image

737 is the step for the steepest descent and ”\” the weight of the regularization
term against the fidelity term. For the MRF case, "temp” mean the temper-
ature parameter. For the BTV case, "Ksize” mean the range of the neighbor
pixels and ”s. weight” the scalar weight.

The signal to noise ratio (SNR) is directly computed from the created images.
It gives a good idea of the amount of noise. But it is not the same for the salt
and pepper noise (noise cases No 6 and 7) who is totally different to the others.
The salt and pepper noise simulates errors of the sensors (no data, saturation
or failure from a sensor).

It is important to note that if the best parameters for a regularization case
include A = 0, it mean the algorithm do not use the regularization term and so
the regularization parameters given have no meaning.

All the "best parameters” are computed with the L1 norm estimation.

Experimental analysis

LAP :

First, it easy to notice that the step is often 1.0 (or close). So the assumption
can be made that for any not to noisy image, a 1.0 step will give good results,
but a step between 0.5 and 1.0 will also give good results for a noisy image.
The weight of the regularization is zero for cases with low noise, because the
purpose of regularization is to provide a priori information to make easier the
steepest descent with a case of noisy image. For low-noisy images, a regulariza-
tion weight of about 0.1 looks good. And for very noisy (as noise cases 4 and
9), a weight of 0.2 up to 1.0 is sometimes necessary.

MRF :

For the MRF regularization, a good steep is similar to the LAP one. 1.0 for
image without or with low noise and between 0.1 and 0.2 for high noise.

For the regularization weight, it should be near 0.1 for image without or with
low noise (like Laplacian regularization). More noised image might need a A
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from 0.3 up to 1.0 sometimes.

The temperature parameter should be smaller for high noised image than with
low noised one. But this parameter also change a lot with the texture of the
image.

BTV :

As for the Laplacian regularization function, in the case of an image without
noise, it is not necessary to use regularization.

It should be noted that a steep close to 0.5 is almost always optimal.

The weight of the regularization function is, when it is used, close to 0.1-0.2.
The scalar weight should be near 0.7 and less for not to noised image.

The range of the neighbor pixels is most of the time 1. But for image with less
texture, it can be bigger. For the alumgrns image, it goes up to 5 sometimes.

All these analysis just give an idea to find the appropriate parameters for ev-
ery experimental image. Consequently, these informations are used to estimate
roughly the expected magnitude of a parameter in order to find the optimum
one.
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4.2.3 Regularization term

This section present the comparative performance of the three regularization
functions (LAP, MRF and BTV) in the SRR framework.
The following figures will show the steepest descent (PSNR between the re-
constructed image X and the original one) for the ”Classical SRR, algorithm”
(L1 norm estimation) with Laplacian, MRF and BTV regularization functions
(using the rough parameters estimations of section 4.2.2).

Lena - No Noise (Algo A - L1) Lena - Gaussian noise SHR = 35 (Algo A - L1)
23.75 2355

Lena - Gaussian noise SNR = 25 (Algo A - L1)
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} 226 215
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Figure 4.7: Regularization functions comparison (lena image) with the classical

SRR algorithm (Algo A)
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Cameraman - No Noise (Algo A - L1) Cameraman - Gaussian noise SNR = 35 (Algo A-L1) Cameraman - Gaussian noise SNR = 25 (Algo A - L1)
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Figure 4.8: Regularization functions comparison (cameraman image) with the
classical SRR algorithm (Algo A)
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Cameraman - No Noise (Algo A - L1)

Cameraman - Gaussian noise SHR = 35 (Algo A - L1)

Cameraman - Gaussian noise SHR = 26 (Algo A - L1)
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Figure 4.9: Regularization functions comparison (alumgrns image) with the
classical SRR algorithm (Algo A)
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Experimental analysis

This thesis will not mathematically analyses the best choice of the regularization
function for every image case, but it will be just a short analysis in order to
choose the appropriate regularization function for each case.

The results show that the best choice change with the kind of the image and
the noise. It gives the impression that MRF is better than Laplacian for low
noise power case.

The BTV results are really bad, and it should not be the case. For the alumgrns
image (low texture, sharp edge), the BTV should be better than the others (at
least for the no added noise case). The only explanation for it, is that the
implementation in Matlab was not perfectly made.
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4.2.4 Norm estimation

This section presents the comparative performance between L1 norm and L2
norm in the SRR framework.

As said before, L2 norm estimation is faster and more efficient, but is not to be
used in case of a very noisy image. The following experiment are the SRR results
(with Laplacian regularization) on lena, cameraman and alumgrns images.
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Figure 4.10: SRR (Laplacian reg.) for the lena image with L1 and L2 norm
estimation
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Y with no added noise Y added with gaussian noise SNR = 35 Y added with gaussian noise SNR = 25
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Figure 4.11: SRR (Laplacian reg.) for the camerman image with L1 and L2
norm estimation
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Y with no added noise Y added with gaussian noise SNR = 35 Y added with gaussian noise SNR = 25
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Figure 4.12: SRR (Laplacian reg.) for the alumgrns image with L1 and L2 norm
estimation

Experimental analysis

The results are in accordance with the theory. For noiseless or low noised images,
the L2 norm estimation gives better results. But in cases with high added noise,
the L1 norm estimation is better than the L2 norm. For the Salt & Pepper noise
cases, L1 is quite better. It is explained by the fact than Salt & Pepper noise is
a high norm noise (modify pixels to 0 or 255 on a 8 bits image).
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4.3 Experimental comparisons for multi-frame
images (synthetic frames)

This experimental results have 2 tested images: Lena and foreman (frame 110").
Each original image is used to create the 5 synthetic degraded images (frames
set). Next, these 5 degraded images are used to reconstruct the SR image.

Figure 4.13: Original image (40x40 pixels) for the synthetic frames set No 1
(lena)

Lena frames set:

The original image is:

The chosen motions are the following ones (the motions are realized in the
original size image, before downsampling):

Frame No H 1 2 3 4 ‘ 5 ‘
Motion (x) [pixel] O () O 7 -1
Motion (y) [pixel] || 0 | 1 1 0.5 | -1

Table 4.6: Chosen motions for the synthetic frames set No 1 (lena)

The frames created will have the same added noise cases than at the begin of
the chapter (Tab. 4.1).
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The following figure shows the created frames sets:

Frame Mo 1 Frame Mo 2 Frame Mo 3 Frame Mo 4 Frame No 5

Moise case 1

Noise case 8  Noise case 7 MNoise case 6  Moise caseS Moise case 4  Noise case3  Moise case 2

Moise case 39

10 20

Figure 4.14: Synthetic frames sets No 1 (lena) with several added noise model
at different power
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Foreman frames set:

The original image is:

A

ey
2

Figure 4.15: Original image (40x40 pixels) for the synthetic frames set No 2
(foreman)

The chosen motions are the following ones (the motions are realized in the
original size image, before downsampling):

Frame No || 1| 2 3 4 )
Motion (x) [pixel] || 0| 0 | 0.5 | 0.7 | -1.1
Motion (y) [pixel] || 0 | 0.5 | 1.2 | 0.5 | -1

Table 4.7: Chosen motions for the synthetic frames set No 2 (foreman)

The frames created will have the same added noise cases than at the begin of
the chapter (Tab. 4.1).
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The following figure shows the created frames sets:

Frame Mo 1 Frame Mo 2 Frame Mo 3 Frame Mo 4 Frame No 5

10

Moise case 1

10

a
S

Moise case 2

20

Moise case 3

o
P

s

10 20
10 20
10 20
A5

Moise case 4

Moise case 5

Moise case 6

Moise case 7

Moise case 8

Moise case 39

Figure 4.16: Synthetic frames sets No 2 (foreman) with several added noise
model at different power
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4.3.1 Algorithms experimental results (in qualitative mea-
surement)

Making simulations with different regularization terms have no real interest in
this part of the paper. So, all the simulations will be made with the Laplacian
regularization term to just compare the results among the algorithms.

The first simulation compute the super resolution reconstruction with every
algorithm for the lena synthetic frames and every noise cases (using the rough
parameters estimations of section 4.2.2, but for the parameters estimation who
give A = 0, it takes A = 0.1 to use the regularization). The next figure shows
the best results for every SRR:

245 T T T T T T T

I Classical SRR algorithm

I Fast SRR algorithm based on Recursive Least Square
24 [_"1SRR algorithm based on Simultaneous Image Registration
:| Proposed SRR algonthm

PSNR between original and reconstructed image X

2 3 4 5 6 7 8 g
2 g I g & g g
3 & 3 ) L) # ]
5 3 3 ¥ v I o
O N v ~ \ VAN J
No noise hd Poisson N '
Gaussian Salt & Pepper Speckle

Figure 4.17: Results with the lena synthetic frames for all SRR algorithms (and
the proposed one) with Laplacian regularization
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l PSNR between X and X ‘
[ Noise case “ 1 [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 [ 9 ]
Algo A 23.44 | 23.43 | 23.21 | 21.87 | 22.77 | 22.82 | 22.57 | 22.54 | 21.37
Algo B 23.47 | 23.39 | 23.42 | 22.96 | 23.16 | 23.28 | 23.07 | 23.06 | 22.79
Algo C 23.51 | 23.51 | 23.24 | 21.86 | 22.84 | 22.78 | 22.53 | 22.56 | 21.36
Algo D 23.67 | 23.70 | 23.64 | 22.97 | 23.44 | 23.34 | 23.13 | 23.50 | 22.95

Table 4.8: Results with the lena synthetic frames for all SRR algorithms (and
the proposed one) with Laplacian regularization (A is for the ”Classical SRR
algorithm”, B the "Fast SRR algorithm based on Recursive Least Square”, C
the "SRR algorithm based on Simultaneous Image Registration” and D the
”Proposed SRR algorithm”)

Noise case 1 (no noise) Noise case 2 (Gaussian, SNR = 35) lMoise case 3 (Gaussian, SNR = 25)
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------ SRR algorithm based on Simultaneous Image Registration
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Figure 4.18: Results with the lena synthetic frames for all SRR algorithms (and
the proposed one) with Laplacian regularization. Noise cases 1-3 in detail (evo-
lution of the reconstructed images). Iteration 0 is the pre-process (interpolation
or shift-and-add).
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I Classical SRR algorithm
2551 [ Fast SRR algorithm based on Recursive Least Square i
[CIsRr algorithm based on Simultaneous Image Registration
|:|F'r0pused SRR algorithm

PSNR between original and reconstructed image X

Moise
case: | 2 3 4 5 6 . 7 g 9
’:i‘? ’:‘{? ’;f? a? é';? c:;' Q:g,
3 o L3 P s P .
5 3 3 o v A K
\T/ . E & & ) \T/ . R ,
No noise N Poisson A N
Gaussian Salt & Pepper Speckle

Figure 4.19: Results with the foreman synthetic frames for all SRR algorithms
(and the proposed one) with Laplacian regularization

‘ PSNR between X and X
[Noisecase [ 1 | 2 | 3 | 4 | 5 | 6 [ 7 | 8 | 9 |
Algo A 24.94 | 24.84 | 24.85 22.29 23.62 23.93 23.88 23.69 22.60
Algo B 24.63 24.64 | 24.54 23.39 24.47 | 24.08 23.88 24.49 23.79
Algo C 24.94 | 24.84 | 24.85 22.26 23.62 23.91 23.78 23.69 22.61
Algo D 24.63 24.64 | 24.54 23.41 24.47 | 24.08 23.94 | 24.49 23.90

Table 4.9: Results with the foreman synthetic frames for all SRR algorithms
(and the proposed one) with Laplacian regularization (A is for the ”Classical
SRR algorithm”, B the ”Fast SRR algorithm based on Recursive Least Square”,
C the "SRR algorithm based on Simultaneous Image Registration” and D the
”Proposed SRR algorithm”)
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Experimental analysis

Lena synthetic frames:

At the start of the SRR algorithms, the ”Classical SRR algorithm” and the
"SRR algorithm based on Simultaneous Image Registration” give the same re-
sults. It is explained by the fact that the first reconstructed image is the same.
After each iteration, the second one become better with added informations
from the frames with better motion estimations.

The "Fast SRR algorithm based on Recursive Least Square” and the ” proposed
SRR algorithm” start already with better results. This is because these al-
gorithm start with an image who is a fusion of all the frames (Shif-and-Add
method). The better motion estimation of the ”proposed SRR algorithm” gives
directly a better start in the steepest descent.

It’s easy to see that the results are better with the ”proposed SRR algorithm”.
For high noised frames (noise cases No 4, 6, 7 and 9), the proposed algorithm
is near to have the same performance than the "Fast SRR algorithm based on
Recursive Least Square” but still better. It is the case because the new motion
estimations are not really better with high noise.

The "SRR agorithm based on Simultaneous Image Registration” should be bet-
ter for every case than the ”Classical SRR algorithm”. It is not the case with
the Salt & Pepper noise. This is probably the case because Salt & Pepper is a
high norm noise and the motion estimation with cross correlation might be not
the best motion estimation algorithm for this kind of noise.

It is also to note that the number of iterations with the ”Fast SRR algorithm
based on Recursive Least Square” and the ”proposed SRR algorithm” are much
smaller than for the other. It should be because these algorithms start with all
the frames informations and the steepest descent is used just for the deblurring
and denoising. The other algorithms use also the steepest descent to add frames
informations in the reconstructed images.

Foreman synthetic frames:

On this simulation (fig. 4.19), there are far fewer new motion estimation.

The ”SRR algorithm based on Simultaneous Image Registration” is also worse
than the ”Classical SRR algorithm” in the Salt & Pepper noise cases (probably
for the same reason).

But for the case with new motion estimation for the ”proposed SRR algorithm”,
it is better than the ”Fast SRR algorithm based on Recursive Least Square”.
In most of the cases, the proposed SRR algorithm provide better results. This
gives the impression that it is sometimes worse in cases with very little added
noise (or no noise).
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4.3.2 Algorithms experimental results (in subjective mea-
surement)

The following figures show the results in subjective measurement of the previous
section (qualitative measurement):

Algo A Algo B Algo C Algo D
(PSNR = 23.44) (PSNR = 23.47) (PSNR = 23.61) (PSNR = 23.67)

Moise
case 1

(PSNR = 23.43) (PSNR = 23.39) (PSNR = 23.51) (PSNR = 23.70)

Moise
case 2

(PSNR = 23.21) (PSNR = 23.42) (PSNR = 23.24) (PSNR = 23.64)

Noise
case 3

(PSNR = 21.87) (PSNR = 22.96) (PSNR = 21.86) (PSNR = 22.97)

’

(PSNR = 22.77) (PSNR = 23.16) (PSNR = 22.84) (PSNR = 23.44)

Figure 4.20: Algorithms experimental results (in subjective measurement).
Lena synthetic frames, noise cases 1-5. A: ”Classical SRR algorithm” (Laplacian
and L1). B: ”Fast SRR algorithm based on Recursive Least Square” (Lapla-
cian and L1). C: ”SRR algorithm based on Simultaneous Image Registration”
(Laplacian and L1). D: "Proposed SRR algorithm” (Laplacian and L1).

Noise
case 4

Noise
case 5




Algo A Algo B Algo C Algo D
(PSNR = 22.82) (PSNR = 23.28) (PSNR = 22.78) (PSNR = 23.34)

MNoise
case B

v

(PSNR = 22.57) (PSNR = 23.07) (PSNR = 22.53) (PSNR = 23.13)

Moise
case 7

(PSNR = 22.54) (PSNR = 23.06) (PSNR = 22.56) (PSNR = 23.50)

Moise
case B

(PSNR = 21.37) (PSNR = 22.79) (PSNR = 21.36) (PSNR = 22.95)

Moise
case 9

Figure 4.21: Algorithms experimental results (in subjective measurement).
Lena synthetic frames, noise cases 6-9. A:”Classical SRR algorithm” (Laplacian
and L1). B: ”Fast SRR algorithm based on Recursive Least Square” (Lapla-
cian and L1). C: ”SRR algorithm based on Simultaneous Image Registration”
(Laplacian and L1). D: "Proposed SRR algorithm” (Laplacian and L1).
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Figure 4.22: Algorithms experimental results (in subjective measurement).
Foreman synthetic frames, noise cases 1-5. A: ”Classical SRR algorithm”
(Laplacian and L1). B: ”Fast SRR algorithm based on Recursive Least Square”
(Laplacian and L1). C: ?”SRR algorithm based on Simultaneous Image Registra-
tion” (Laplacian and L1). D: "Proposed SRR algorithm” (Laplacian and L1).
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Figure 4.23: Algorithms experimental results (in subjective measurement).
Foreman synthetic frames, noise cases 6-9. A: ”Classical SRR algorithm”
(Laplacian and L1). B: ”Fast SRR algorithm based on Recursive Least Square”
(Laplacian and L1). C: ”SRR algorithm based on Simultaneous Image Registra-
tion” (Laplacian and L1). D: "Proposed SRR algorithm” (Laplacian and L1).



The next two figures present the reconstructed images with different algorithms
and other SRR methods. The first simulation works on the synthetic frames
with added Gaussian noise and the second with added Salt & Pepper noise (see
appendix B for more informations about the Steering Kernel Regression).

A B c
Frame Y (1/5)

Original X (PSNR = 23.21)

(PSNR = 23.42) (PSNR 23.24)

(PSNR = 23.35) (PSNR 22.82) (PSNR = 23.33)

Figure 4.24: Reconstructed images examples with the reviewed algorithms and
other SRR methods. Lena synthetic frames (noise case 3, Gaussian noise SNR,
= 25). A: The original X image. B: The first of the 5 frames. C: ”Classical SRR
algorithm” (Laplacian and L1). D: ”Fast SRR algorithm based on Recursive
Least Square” (Laplacian and L1). E: SRR algorithm based on Simultane-
ous Image Registration” (Laplacian and L1). F: ?Proposed SRR algorithm”
(Laplacian and L1). G: Shift-and-Add method (Bicubic) + Iterative Steer-
ing Kernel Regression. H: Shift-and-Add method (Nearest). I: Shift-and-Add
method (Bicubic).




A c
Original X Frame Y (1/8) (PSNR = 22.95)

D
(PSNR = 23 38) (PSNR 2274) PSNR 23 45)

G
(PSNR = 23.17) F’SNR 22.17) PSNR 22.50)

Figure 4.25: Reconstructed images examples with the reviewed algorithms and
other SRR methods. Lena synthetic frames (noise case 6, Salt & Pepper noise
d = 0.015). A: The original X image. B: The first of the 5 frames. C: ”Classical
SRR algorithm” (MRF and L1). D: "Fast SRR algorithm based on Recursive
Least Square” (MRF and L1). E: ”SRR algorithm based on Simultaneous Image
Registration” (MRF and L1). F: "Proposed SRR algorithm” (MRF and L1).
G: Shift-and-Add method (Bicubic) + Iterative Steering Kernel Regression. H:
Shift-and-Add method (Nearest). I: Shift-and-Add method (Bilinear).
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Experimental analysis

These two experiments demonstrate why the ”Classical SRR algorithm” is so
good for the cases without noise (or very little), or rather, why is it so bad
with added noise (also the ”SRR algorithm based on Simultaneous Image Reg-
istration”). The ”Proposed SRR algorithm” uses the method of Shift-and-Add
before the SRR using stochastic regularization. The noise in this case is mixed
together, and with random noise, this tends to decrease it. Salt & Pepper noise
example shows it good.

But the ”Classical SRR algorithm” starts with a frame and adds informations
of the other frames at each step of the steepest descent.

So by starting the ”Fast SRR algorithm based on Recursive Least Square” and
the "Proposed SRR algorithm” with a Shift-and-Add method, it makes them
robust to noise.
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4.3.3 Computing times

The next table shows the computing times (CT) until the best reconstructed
image of the simulation on figure 4.17, the number of iterations (I) and de
number of new motion estimations (NME) for the "SRR algorithm based on
Simultaneous Image Registration” and the ”proposed SRR algorithm”:

[Noisecase | 1 | 2 [ 3 [ 4 [ 5[] 6 [ 78] 9 |
CT[s]][ 52 [ 48 [ 72 [ 96 [ 97 [131]16.0 [ 14.8 [ 10.6

A I 15 14 21 30 30 41 50 46 33

B CT [s] || 2.1 19 | 21 1.5 1.8 | 21 | 23 | 3.0 | 1.2
I 7 6 7 5 6 7 8 10 4
CT [s] || 19.9 | 10.5 | 12.7 | 18.7 | 20.6 | 43.9 | 31.9 | 30.8 | 20.6

Cc I 17 15 19 29 32 34 50 48 32

NME 2 1 1 1 1 3 1 1 1

CT[s] || 49 | 63 | 36 | 45 | 42 | 47 | 53 | 7.1 2.4
D I 8 7 6 5 7 8 9 8 4

NME 1 2 1 2 1 1 1 2 1

Table 4.10: Computing times with the lena synthetic frames for all algorithms
(and the proposed one) with Laplacian regularization (A is for the ”Classical
SRR algorithm”, B the ”Fast SRR algorithm based on Recursive Least Square”,
C the "SRR algorithm based on Simultaneous Image Registration” and D the
”Proposed SRR algorithm”)
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Figure 4.26: Computing times with the lena synthetic frames for all algorithms
(and the proposed one) with Laplacian regularization
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Experimental analysis

No surprise, the ”Proposed SRR algorithm” is slower than the ”"Fast SRR al-
gorithm based on Recursive Least Square”. But even with the iterative motion
estimation, he is most of the case faster than the ”Classical SRR algorithm”
(and for sure, faster than the "SRR algorithm based on Simultaneous Image
Registration”).

It is also to note that the new motion estimations are quite few (most of the
time 1 or 2).
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4.4 Experimental comparisons for multi-frame
images (real frames)

For this experimental part, real frames will be used. So, it would not be possible
to analyse the result with for example, the error with the original image. This
analysis will be made just by visual quality of the output reconstructed images.

The results of two set of real frames will be analysed:

e A set of text frames, captured with an Olympus C-4000 camera . These
frames approximately follow the global translational motion model. The
selected part is a 20x20 pixels zone (up left) of the real frames. The first
frame will be the reference frame for the SRR.

e Foreman frames No 108-112 (the frame No 110, used in the experimental
comparisons with synthetic frames, will be the reference frame for the

SRR).

Frame Mo 1 Frame No 2 Frame Mo 3 Frame Mo 4 Frame Mo &
y High ol Hish g Hot o
10 10 10 10
o HP Lk B8 HF Livi g H° Lnagt
20 20 20 20 20
10 20 10 20 10 20 10 20 10 20

Figure 4.27: Real frames set No 1 (20x20 pixels)

I —
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Frame No 108 Frame No 109 Frame Mo 110 Frame No 111 Frame Mo 112

R
20
40
60

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

Figure 4.28: Real frames set No 2 (68x68 pixels)

1Source of the frames: Sina Farsiu,
http://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
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4.4.1 The algorithm of iterative termination technique

Until this point, all the simulations compute a number of SRR iterations and
take the best one. It is only possible because the real image X is available.
Unfortunately, for real frames SRR, X is unknown. Thus for this experimental
section and its subsection, measurement the criteria for determining the best
result (or the best reconstructed image X ) have three methods as following;:

e Visual analysis of the reconstructed images, but it is hard to determine.

e Training with approaching synthetics frames to find the estimate number
of iterations.

e Analysis between the reconstructed images.

Analysis between the reconstructed images:
This method is choosed by this thesis because it can be really applicable. The

next simulations give the PSNR and the RMSE between the reconstructed im-
ages given by the classical SRR algorithm.
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LAP SRR: Y added with gaussian noise SNR

LAP SRR: Y with no added noise
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Figure 4.29: Analysis between the reconstructed images (lena image, noise case

1& 4)
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LAP SRR: Y added with gaussian noise SKR = 15

LAP SRR: Y with no added noise
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Figure 4.30: Analysis between the reconstructed images (alumgrns image, noise

case 1 & 4)

58



LAP SRR: Y added with Speckle noise, v=0.01

LAP SRR: Y added with Salt & Pepper noise, d = 0.03
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Experimental analysis

Apparently it is possible to find an optimum reconstruction (or close to the
one) by analysing the value of the PSNR or RMSE between the reconstructed
images. It is the case even by using the L1 norm estimation or the L2.

For example, for the simulation on figure 4.29, a threshold of 0.3 in the RMSE
looks good.

In the second simulation (alumgrns image, fig. 4.30), the thresholds seem to be
the same (RMSE near 0.3, PSNR near 60). But this will not mean it will be
the same with every case.

The last simulation (fig. 4.31) shows that the thresholding is still possible
but not with the same threshold (for example, near 65 for PSNR in the Salt
& Pepper noise case, and near 50 in the Speckle noise case). With RMSE, the
thresholds change also (logic, they are mathematically related).

So it looks possible to find the best reconstructed image by analysing the dif-
ference between them. But for any cases, training of similar images to find the
threshold (PSNR or RMSE) is necessary to have good results.

It is interesting to note that the thresholds seems to be the same (or close) with
L1 and L2 norm estimation (for PSNR and RMSE).
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4.4.2 Experimental comparisons on real frames set No 1

This comparison has results shown on Fig. 4.32 and 4.33. The first one shows
the evolution of delta (RMSE between the reconstructed images) for all algo-
rithms with the Laplacian regularization. The second figure shows some of the
reconstructed images with different delta thresholds. The step 8 will be 1.0 and
the regularization weight A 0.1 for all the SRR.
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Figure 4.32: RMSE between the reconstructed images for the real frames set
1 using the Laplacian regularization (A is for the ”Classical SRR algorithm”,
B the "Fast SRR algorithm based on Recursive Least Square”, C the "SRR
algorithm based on Simultaneous Image Registration” and D the ”Proposed
SRR algorithm”)
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Algo A, LAP, L2, delta = 0.35 (i = 26) Alga A, LAP, L2, delta = 0.30 (i = 29) Algo A, LAP, L2, delta = 0.25 i = 34)
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Figure 4.33: Reconstructed images of the real frames set 1 (delta = RMSE
between the reconstructed images, i = iteration, A is for the ”Classical SRR
algorithm”, B the "Fast SRR algorithm based on Recursive Least Square”, C
the "SRR algorithm based on Simultaneous Image Registration” and D the
”Proposed SRR algorithm”)

62



Experimental analysis

As mentioned before, find the best reconstructed image by visual analysing is
really difficult, if not impossible. No training was made before, so it is not
possible to know at with delta (or iterations number) the algorithms should
stop.

But even with that, the results show that the ”Fast SRR algorithm based on
Recursive Least Square” and the ”Proposed SRR algorithm” are better than
the others here.

The "SRR algorithm based on Simultaneous Image Registration” is visually
better than the ”Classical SRR algorithm”, but to find the best between the
”Fast SRR algorithm based on Recursive Least Square” and the ”Proposed SRR
algorithm” might be impossible in this case.
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4.4.3 Experimental comparisons on real frames set No 2

The second real frames set have larger images (68x68 pixels). The processed
image in vector format is than 1362x1 = 18’496x1 (upsampling factor of 2). For
example, the blur matrix would have a size of 18'496x18°496. The computation
time would be too long and the computer memory to limited if the algorithm
dealt directly with the frames. To reduce the computational time, the frames
are fragmented to 20x20 pixels parts with an overlap of 8 pixels (40x40 pixels
with an overlap of 16 pixels after the upsampling). The blur matrix is than just
1600x1600 large.

8 pixels 20 pixels
™

AR AB AC AD AE 20 pixels

BA BB BC BD BE
F 8pixels

68 pixels CA CB cc cD CE

DA DB DC DD DE

EA EB EC ED EE

68 pixels

Figure 4.34: Separated parts of the frames set No 2

After super resolution reconstruction, the parts will be merged again to have
the final reconstructed image (136x136 pixels). For the overlap, it will use the
half width with one of the reconstructed part and the second half width with
the next part.
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Algo A (LAP & L1) B=101L=01 Algo B (LAP & L1) B=101=01
[teration No 10 [teration No 10
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Figure 4.36: Reconstructed images of the real frames set 2 (all algorithms) (A
is for the ”Classical SRR algorithm”, B the ”"Fast SRR algorithm based on
Recursive Least Square”, C the "SRR algorithm based on Simultaneous Image
Registration” and D the ”Proposed SRR algorithm”)
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Figure 4.37: Reconstructed images of the real frames set 2 (proposed algorithm)

Experimental analysis

As for the real frames set No 1, it is hard to see any difference between the
algorithms, and the different reconstructed images for the proposed algorithm.
The only visible difference is the mouth between the ” Classical SRR algorithm”
and the "SRR algorithm based on Simultaneous Image Registration” against
the "Fast SRR algorithm based on Recursive Least Square” and the ”Proposed
SRR algorithm”. It is the case because the two first use the frame No 110 and
add informations of the other frames in the steepest descent, and the two last
algorithms use a frames fusion at the begin of the steepest descent method.
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Chapter 5

Conclusion

This thesis present the Super Resolution Reconstruction and more specifically
the Super Resolution Reconstruction using stochastic regularization approach.
For this, four algorithms have been reviewed, and also tree types of regulariza-
tion functions and two norm estimations.

This paper shows how Super Resolution Reconstruction using stochastic reg-
ularization approach works and why the choices of the parameters, the regular-
ization function and the norm estimation are important.

But mainly, this work is about to introduce a ”Proposed SRR algorithm” based
on recursive least square estimation and simultaneous image registration and to
test it.

The proposed algorithm is based on the ”Fast SRR algorithm based on Re-
cursive Least Square” and the "SRR algorithm based on Simultaneous Image
Registration”. So, several simulations were used to find the advantages or weak
points inherited by these algorithms. This gives the following assumptions:

As the "Fast SRR algorithm based on Recursive Least Square”, the proposed
algorithm is quiet fast. Sure it is slower than the first because of the iterative
motion estimation, but faster than the ”Classical SRR algorithm” and the ”SRR
algorithm based on Simultaneous Image Registration”.

For the iterative motion estimation on the "SRR algorithm based on Simultane-
ous Image Registration”, and also implemented in the proposed algorithm, the
simulations show that it is closer to real application by finding better motion
estimations. For some experiments, the iterative motion estimation for the Salt
& Pepper noise is some times not so good than the first one. It is probably
because it uses a cross correlation motion estimation method. This algorithm
might be not the best for high noised images registration. It should be interest-
ing to use the algorithms with another registration algorithm.

Starting with a frames fusion, it makes the ”Fast SRR algorithm based on Re-
cursive Least Square” and the proposed algorithm more robust to noise than
the ”Classical SRR algorithm” and the "SRR algorithm based on Simultaneous
Image Registration”. The two first algorithms will start the steepest descent
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with an image created from all the frames. The random noise on each frame will
be smaller on the start image. But the start point of the steepest descent for
the ”Classical SRR algorithm” and the "SRR algorithm based on Simultaneous
Image Registration” is the first input frame. So if there is noise on this image,
it will be also on the first step of the reconstructed image.

The simulation could give the impression that the proposed algorithm is really
better than the other ones. But it should be interesting to run for example the
”SRR algorithm based on Simultaneous Image Registration” with the frames
fusion image as start point for the steepest descent.

So the proposed SRR algorithm based on recursive least square estimation and
simultaneous image registration is a fast algorithm, robust to noise and giv-
ing better reconstructed images tanks to the iterative motion estimation. This
makes it particularly valuable for real practical use.

Directions for future work:

In addition to developing more the proposed SRR algorithm, it would be in-
teresting to continue to develop the framework for the detection of the best
reconstruction image without knowing the original image. This framework hav-
ing already given good results (section 4.4.1).
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Appendix A
SRR Toolbox for Matlab

For the need of the experimental comparisons, a toolbox for Matlab was created.
It uses also functions of the Image Processing Toolbox of MathWorks, functions
of the SRR toolbox by Vorapoj Patanavijit, functions of the SRR toolbox by
Hiroyuki Takeda [15] and the function “dftregistration()” created by Manuel
Guizar (Efficient subpixel image registration by cross-correlation) [6].

Rules for using the SRR toolbox

There is some points to take care to use the toolbox:
e The input images have to be square images (dimX = dimY)
e The upsampling factor has to be 0, 2, 4, 8, etc.

e The toolbox was created under Matlab v.7.7 but some used functions were
created for older versions. The toolbox work well under v.7.7 but there is
no guaranties that it also work under older versions (but it should).

The next two pages will give a list of the functions in the toolbox and a short
explication of how to use it. For more informations about each function, see the
help inside every m-file.
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Figure 5.1: Functions of the SRR toolbox.
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How to use the SRR toolbox

[X reconstructed, Hb X, MotionEstim] = SRR AlgolA Laplacian(varargin)
|_,_I —_ \
Algorithm choice

Input:
The functions give back: nput

Regularization
- The reconstructed image for every iteration (X_reconstructed) function choice
- The number of iterations (Nb_X)
- The motion estimation for every frame [MotionEstim)

Alsorithm choice:

. . "translation' to hawve
- "A" for the "Classical SRR algorithm” a motion estimation

- "B" for the "Fast SRR algorithm based on Recursive Least Sguare” with just dx and dy
- "C" for the "SRR agorithm based on Simultanecus Image Registration” (very fast) or

- "O" for the "Proposed SRR algorithm” "fullMotion® for a
real motion estimation

(high computing time)

Regularization function choice:

- "Laplacian” for the Laplacian regularization function
-"MRF" forthe Markov Random Field regularization function
- "BTV" forthe Bilateral Total Variation regularization function

Inputs:

varargin = "Input image(s) and upsampling factor" + "Blur Matrix" + "SRR algeorithm parameters"
+ "Regularization parameters” + "Norm estimation choice" + "Stop mode"

"Input image(s) and upsampling factor" = forone input image: Y, upsamplingFactor
for frames input: ¥y, ¥y, Yy, motionEstimationMethod, upsamplingFactor

"Blur Matrix" = the matrix of the estimated blur

"SRR algorithm parameters" = A (weight of the regularization term), B (steep of the steepest descent)

"Regularization parameters" = for Laplacian: none /—._-\

for MRF: MRF temperature ‘:‘isslgﬁz:x:idngm
for BTV: Rang of neighbor pixel, scalarweight fu:r_'tions_ See
functions help
"Morm estimation choice" = for L1 norm estimation: i for more
for L2 norm estimation: L informations.
"Stop mode" = tostop after niterations: 'iter', number of iterations

tostop when the RMSR
between the reconstructed
imageis smaller than delta: 'delta’, delta

Figure 5.2: How to use the SRR toolbox.
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Appendix B

Steering Kernel Regression

Steering kernel regression (or data-adapted kernel regression) works as an im-
provement of bilateral filtering.

Bilateral filter was introduced by Tomasi et al. [16]. It uses the concept of
Gaussian smoothing by weighting it with the radiometric value of each pixel.
So it reduces the noise while preserving edges [17].

spatial kernel f influence g in the intensity
domain for the central pixel

input weight fx g
for the central pixel

output

Figure 5.3: Bilateral filter operations (Image source: [18]).

Indeed, with great texture or an image with much noise makes badly the use of
bilateral filtering. Data adapted kernel regression also uses a Gaussian kernel,
but this core is modified in this case at each location by the texture of the
image. If at any point of the image there is an edge, the Gaussian kernel will
be stretched and will be rotated so that the filter preserves the edges (based on
local gradient fields). In addition, the kernel size is changed according to the
image (if it is an area with little information there will be greater than if it is
an area with lots of texture) [19] [15] [20].
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The data-adapted kernel at each point K; is given by:

Kl(:L'Z _ x) _ \/ d@t(C,) . exp { (QL'2 — m)TC’Z(xZ — l’) } (51)

2mh2p? 2h2 2

where C; is the covariance matrix based on the local values. This matrix can
be decompose as follow:

Ci = %‘U@il\an (52)
and:
c0s®;  sin®;
Ueo, = {—sin@i cos@i] (5.3)
e O
=l (5.4

where Ug, is the rotation matrix and A; the elongation matrix. So the co-
variance matrix is given by three parameters: the scaling ~;, the rotation ®;
and the elongation p; parameters. This terms are principally compute from the
eigenvalues and eigenvectors of the local gradient fields.
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