
HEIG-VD
Haute Ecole d’Ingénierie et de Gestion

de Canton de Vaud

B A C H E L O R T H E S I S

GPU-accelerated triangle-triangle
intersection tester algorithm

Author: Romain Maffina

Thesis Advisor: Stephan Robert

Mandator: Pixelux Entertainement

July the 27th, 2012



PDB Thesis Romain Maffina

2



Specifications

The goal of the project is to develop a triangle-triangle collision algorithm. A reference triangle is given
as well as a variably-sized array of many other triangles. The algorithm must check if one triangle
intersects with the reference triangle. That operation has to be led for each "non-reference" triangle with
the reference triangle. If one triangle intersects with the reference triangle the algorithm must return a
true value, otherwise (if none of the triangles in the array intersects with the reference triangle) it must
return a false value. The algorithm has to be as fast as possible. Therefore we are trying to use the
capabilities of massively parallel computations with GPUs (Graphics Processing Units). In particular
the NVIDIA technology was chosen. Therefore the implementation of the algorithm is done in CUDA C.

Here is the specifications given by Pixelux Entertainement on March 1st, 2012 :

The project is to build a CUDA-accelerated triangle-triangle intersection test. This could
benefit our auto-cage tool that constructs watertight "cages" used for tessellation around
geometry objects.

The project is defined as such:

1. Assume you have a triangle. A triangle is represented as a 2D object but it is represented
in 3D coordinates. So very simply defined as a set of 3 3D coordinates.

2. Assume you have a list of triangles that you will be comparing a single triangle to. I
would imagine that in CUDA, this would ideally be represented as some sort of array.

3. Write a CUDA function that compares a single triangle to the list of triangles and returns
True or False. True if the triangle intersects any of the triangles in the list, and False if
it does not.

We prefer the code be written in "C" and, of course, CUDA.

3



PDB Thesis Romain Maffina

4



Contents

1 Introduction 3

2 Setting up 5

2.1 Some considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The chosen approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 First steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 The OpenGL viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 The vector library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Develop the algorithm as a standard C function 11

3.1 First version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 The quick rejection test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.2 Triangle projection on a plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 2D intersection test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 Problem : Particular case not handled . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Second version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Intersection of P0 and P1 resulting in a line L . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Projection of T0 and T1 on the line L . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Order the vertices of each triangles prior to the projection on L . . . . . . . . . . . 21

3.2.4 Compute each triangle interval on L . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Test bench of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Random tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5



PDB Thesis Romain Maffina

4 Port the C function to a CUDA function 27

4.1 Toolkit version used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Introduction to CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Important keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Device properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 General pattern of a CUDA application . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.4 The kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.5 Using blocks and threads together . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.6 Hardware architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 The ported function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Optimize the function 33

5.1 A proper testing program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Optimize the common algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 v1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.4 v1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.5 v1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Optimize the CUDA part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Split kernel launches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 Maximize hardware utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.3 Use of host pinned memory - not applicable . . . . . . . . . . . . . . . . . . . . . . 40

5.3.4 Staged concurrent copy and execute with streams - not applicable . . . . . . . . . 40

5.3.5 Multi-GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.6 Debug to Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Performance analysis 45

6.1 Algorithm optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 CUDA optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Overview on a high-end machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.4 Overview on a 5 years old machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6



PDB Thesis Romain Maffina

7 Conclusion 53

7.1 Problems encountered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 CUDA tools have no linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.2 NVIDIA Developer Zone down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.3 Float rounding differences between CPU and GPU . . . . . . . . . . . . . . . . . . 54

7.2 Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 Multi-core CPU version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2.2 WDDM TDR workaround also available for multi-GPU . . . . . . . . . . . . . . . 55

7.2.3 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Last words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Installing CUDA 59

A.1 Do you have a CUDA-capable device? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 To use CUDA application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 To develop CUDA applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3.1 Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3.2 With a IDE integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.4 How to deactivate Windows GPU driver timeout . . . . . . . . . . . . . . . . . . . . . . . 60

B How to use the functions 61

C How to use the test program 63

D Listing 65

D.1 Triangle-triangle intersection test algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 65

D.2 Test program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7



Abstract

During this thesis, after having firstly developed a testing and viewing program to help me in my task,
I’ve realized the algorithm to test the intersection between two triangles in a 3D space. This algorithm
has been then integrated in a higher level function to meet the specifications of computing the intersection
for each triangle of an array with a reference triangle. The function was first only developed for the CPU.
Then, after many corrections and optimizations too ensure the rightness and speediness of the algorithm,
I’ve tested to port the function to CUDA while forming myself about this technology. The first part of
my thesis ends here.

Then, in the second full-time part of my thesis, I’ve ported the CPU version of the function to CUDA
as cleanly as possible but above all trying to optimize it to make it as fast as I could. After that, the
remaining time was dedicated to secure the function and make it reliable. At the same time, I’ve enhanced
the functionality of my test program for that purpose.



PDB Thesis Romain Maffina

2



Chapter 1

Introduction

In the past few years, a new computation power as been "discovered" for general-purpose computing.
Discovered is maybe not exactly the good word, in fact, it already exists for a longer time, but no one
had the idea to use it this way until a few years ago. The computation power I’m talking about is known
as GPGPU 1 and is the means of using a GPU 2 to perform computation in general-purpose application
that would have normally been handled by the CPU 3.

Last year, during summer university courses, I had an introduction to CUDA4 technology invented by
Nvidia Corporation. It’s precisely a concrete way to implement GPGPU using the NVIDIA compatible
end-user GPUs. The first SDK for CUDA as been released on February 2007.[5] The course interested
me a lot as well as the idea of GPGPU, I thought this technology could be a future unavoidable way of
programming and thus I’d like to see it diffused as much as possible.

Therefore, when the time come to me to choose a subject for my thesis, I quickly thought about GPGPU
and CUDA technologies. So I contacted my professor, Stephan Robert, who gave me the CUDA course,
and asked him if he would agree to be my thesis advisor for a thesis based on GPGPU. He gladly accepted
and began to contact some companies to ask them if they were interested to parallelize with CUDA
some part of their algorithm. Unexpectedly, a promising company, Pixelux Entertainement, answered
affirmatively.

[1] In Febuary 2004, Pixelux Entertainment S.A. is founded in Geneva, Switzerland with the
intent of developing technology that would automate art asset generation for video games
through advanced simulation. To that end, the Company creates a unique real-time material
physics simulation technology called "Digital Molecular Matter" or DMM.

Because they must handle very heavy tasks in their DMM, they were interested by the idea and they
proposed me to build a CUDA-accelerated triangle-triangle intersection test. This could benefit their
auto-cage tool that constructs watertight "cages" used for tessellation around geometry objects.

1General-purpose computing on graphics processing units[6]
2Graphics Processing Unit
3Central Processing Unit
4Compute Unified Device Architecture

3



PDB Thesis Romain Maffina

4



Chapter 2

Setting up

2.1 Some considerations

The task given is very clear and simple to understand. It is however not so simple to realize and here are
some important considerations :

First thing, there is not a unique way to realize a triangle-triangle intersection tester but a lot of different
ways! The only thing they have in common is that they are all based on geometric tools. Also one can
mix some parts of those different algorithms to realize it. Moreover, the algorithm could be more or less
complicated, depending on how it must be quick and optimized (i.e. already eliminate triangles that
can’t intersect for sure) and so on. So I first decided to study some of theses algorithms to have a good
overall understanding of what is possible to do and then decide a way to implement it. The searches
I’ve done on the Internet were not very lucky, so I quickly tried to find a good reference book that could
explains it to me in a more complete and comprehensive way. The book I’ve found is called Geometric
Tools for Computer Graphics [2] and have a section who explain a way to check intersections between
two triangles. I’ve decided to follow the steps they present.

Then, as mentioned before, a lot of geometry need to be used, especially the use of vectors and the
associated operations. So I strongly preferred to develop a library for it. However Pixelux Entertainement
said they prefer C code for the function, which is actually quiet good because CUDA is mostly used with
C programming language, but it leads to an extra complication. Indeed C code is not very indicated to
develop such a library with basic operations as plus, minus and so on because it don’t have the operators
overloading, the use of the library become a lot less intuitive.

Finally, I thought that developing such a tough algorithm directly in a CUDA way will probably always
lead to a waste of time. It’s the case because CUDA brings another abstract layer over the natural
trickiness of the problem, in this way a tricky algorithm become a very tricky algorithm. Furthermore,
as the standard function is written in C code, it’s not such a lot of work to port it to CUDA. Finally, this
allows me to do then a very interesting and useful thing : compare the same algorithm in both CPU and
GPU version to see the gain CUDA brings. This could be very informative for Pixelux Entertainement
to see if CUDA is interesting for them.

Now that the fullness of the job is better understood, let’s organize it in the next section.

5



PDB Thesis Romain Maffina

2.2 The chosen approach

Because of the considerations made before, I’ve decided to organize myself in this way :

1. Develop the algorithm as a standard C function using the CPU to compute the collisions

2. Modify then the C function to a CUDA function that will execute itself on the GPU

3. Optimize the algorithm

2.3 First steps

The first development step were to create a testing environment. So I’ve started by writing a random
triangle array generator function and an other function to printf them. Then I quickly realized how hard
it was to imagine how the triangles were placed in the 3D space and even to visualize the shape of each
triangle by only reading a list of coordinates!

So my decision was quickly made : I needed to develop a minimalistic viewer to see the triangles in the
3D space and be able at least to rotate the camera around them. OpenGL came immediately to my mind
to realize it.

2.3.1 The OpenGL viewer

Because the collision between two triangles can only be checked visually, a viewer is essential and nec-
essary. It will be also very important during the test phase. The goal of this viewer is not to be very
user-friendly or beautiful so it’s minimalistic.

I think that it’s not pertinent to explain how this viewer has been developed as it’s only part of the test
program. However here are some figures that show how it looks.

The Figure 2.1 shows a standard random test with 10 triangles generated randomly. The reference triangle
is painted in blue. The algorithm then checks the collisions and marks each triangle that intersect with
the reference triangle in orange and leave the other ones in grey. One can rotate around the Y axis with
the mouse and zoom in/out with the keyboard. A new bunch of random triangles can be generated by
pressing the space key.

The Figure 2.2 shows a debugging situation where a pair of triangle is isolated. The viewer draws also
some helpers : the intersection of each triangle with the line L, the intersection of the triangles planes.

The Figure 2.3 shows another debugging situation where triangle’s planes are shown.

6



PDB Thesis Romain Maffina

Figure 2.1: Example of the viewer with 10 triangles plus the reference triangle.

Figure 2.2: Example of the viewer with only a pair of triangles, used to debug.

7



PDB Thesis Romain Maffina

Figure 2.3: Example of the viewer with a pair of triangles and they respective planes, used to debug.

8



PDB Thesis Romain Maffina

2.3.2 The vector library

As the algorithm will use a lot of geometric concepts, I’ve decided to create a library to group them. It
will contain the types definitions, the operations like dot product and some functions like a function to
find the projection of a triangle on a plane, and so on.

I will not present this library here because it’s "only" some mathematics tools, the full source code listing
can be found in appendix D.1.

9



PDB Thesis Romain Maffina

10



Chapter 3

Develop the algorithm as a standard
C function

3.1 First version

This implementation is based on the steps proposed in the book Geometric Tools for Computer Graphics
[2, p.542] and here is an overview of what I will going trough :

quick rejection test : This first step already eliminate with a simple test pair of triangles that cannot
intersect.

triangle projection on other triangle plane : The goal of this is to pass from the 3D world to a
"simpler" 2D world.

2D intersection test : Now that we’re in a 2D world we can perform a "simple" 2D intersection test.

3.1.1 The quick rejection test

Given two triangles T0 and T1, the goal is to do an early check and already eliminate pairs of triangles
that cannot intersect. Indeed, if all vertices of T0 are all on the same side of T1 plane or vice-versa, we
already can say that the two triangles can’t intersect so it’s useless to go further. The figure 3.1 illustrate
this : the blue triangle is entirely on the same side of the red triangle’s plane so we already can eliminate
this pair. Note that in this case you cannot decide to eliminate the pair with the reverse test because the
red triangle intersects the blue plane.

To do this check, I compute for each vertex of the triangle the signed distance of this vertex to the plane.
[2, p.374] This way, a positive value indicates that the vertex is on side A of the plane, a negative value
indicate that the vertex is on side B of the plane and a zero indicate that the vertex lies exactly on the
plane. Thus, if the distances are both positive and negative, the pair is kept as well as if one or more
distances are zero. Otherwise the pair is rejected.

The signed distance is computed as following : We consider a point Q and a plane P : {P , ~n}, where ~n

11



PDB Thesis Romain Maffina

Figure 3.1: Blue triangle is entirely on one side of the red triangle’s plane

−5
0

5 −5
0

5

−5

0

5

(0)

(1)

(2)

(0)

(1)

(2)

(3)

(4)(0)

(1)

(2)

(0)

(1)

(2)

(3)

(4)
x

y

is a normal vector of the plane and P is a point on P.

dist = ~n · ~PQ

The triangle’s plane is compute as following : We consider a triangle T and his 3 points : t0, t1, t2. The
plane is defined as P : ~n, P and d, where ~n is a normal vector of the plane, P is a point on the plane
and d the distance from plane to origin.

~n = ~t0t1 × ~t0t2

P = t0

d = distance from plane to origin, see above

12



PDB Thesis Romain Maffina

3.1.2 Triangle projection on a plane

The projection of the triangle onto the plane is actually a vertex projection onto a plane done three times.
[2, p.663] So we consider the projection Q′ of a point Q onto a plane P. The plane is defined as P : ~n, P

and d, where ~n is a normal vector of the plane, P is a point on the plane and d the distance from plane
to origin. The projected Q′ point is computed as following :

Q′ = Q− (Q · n̂ + d)n̂

Note that here it’s important to use n̂, the ~n vector normalized.

3.1.3 2D intersection test

The method I used to realize a 2D intersection test is the one called The method of separating axes. This
method can only test convex polygons and here is the mathematical fundamental on which the method
is based :

[2, p.265] If there exists a line for which the intervals of projection of the two objects onto
that line do not intersect, then the objects do not intersect. Such a line is called a separating
line or, more commonly, a separating axis.

Figure 3.2 shows examples of non-overlapping and overlapping projections on a random separating axis.

In fact only a finite number of separation axis needs to be considered for this test. It’s only the separation
axis defined by each normal of each edge of both triangles. So we have to consider only 6 separation axis
as shown in Figure 3.3. On each of them we will project both triangles and check if they are separated
or not along the axis. Separated means that the projections of the two triangles don’t overlap. If on all
6 tested axis the projections overlap then the two triangles intersect, otherwise, if one or more of the six
axis shows non-overlapping projections, then the two triangles don’t intersect.

13



PDB Thesis Romain Maffina

Figure 3.2: Examples for non-overlapping and overlapping projections.

t0

~n

~n~n
t1

~n
~n

~n

Figure 3.3: Example of 2 triangles and the 6 separations axes to consider for the test.

14



PDB Thesis Romain Maffina

3.1.4 Problem : Particular case not handled

Coming to the very end of the realization of this algorithm and after testing it a problem appears to me
: there is a very particular case in which the algorithm detects a false positive. Figure 3.4 shows one
among many other triangles configurations that causes that.

To explain why a false positive is detected let’s take again the main steps of the whole algorithm and
applies to them our example.

Quick rejection test : T1 with P0

Two vertices of T1 lies on one side of P0 and the last vertex lies on the other side so the pair is not
rejected.

Quick rejection test : T0 with P1

Two vertices of T0 lies on one side of P1 and the last vertex lies on the other side so the pair is not
rejected as well.

2D intersection test on P0

After projecting T1 on P0 we do a 2D intersection test following the method of separating axis. The
problem appears when we project T1 on P0, indeed while the two triangles do not intersect when
they are in a 3D world they do when they are in a 2D world! Thus the 2D intersection test return
true and so all the conditions are gathered to mark this pair of triangles as intersecting when they
aren’t in fact... The problem is exactly the same if you do the reversed 2D intersection test with
T0 projected on P1.

First I did some attempt to find a workaround to this problem but I had to capitulate because the problem
was not in the code but in the theoretical algorithm. So I’ll have to change the algorithm partly. The
fact is that, as mentioned before, I’ve followed the algorithm given in the GTCG [2] but I misunderstood
it. It may be the fact that it’s written in English and so it’s a bit harder for me to understand. I also
have to say that the triangle-triangle intersection section is not very clear.

Indeed the section is constructed this way : the first part explains with text a method to realize the
intersection test (the method is the interval overlap method describe by Möller and Haines) and then in
the second part they explains the algorithm step-by-step in a summary way. The problem is that the
step-by-step summary is quiet messy and do not made clear reference to what was said before in the first
part. This was quite confusing for me. Here is the summary I’m talking about1 :

[2, p.542] [. . . ]
An outline of the entire algorithm is as follows:

1. Determine if either T0 or T1 (or both) are degenerate, and handle in application dependent
fashion (this may mean exiting the intersection algorithm, or not).

2. Compute the plane equation of T0.

3. Compute the signed distances distV
1,i , i ∈ {0, 1, 2}, of the vertices of T1.

4. Compare the signs of distV
1,i , i ∈ {0, 1, 2}: if they are all the same, return false; otherwise,

proceed to the next step.

5. Compute the plane equation of T1.
1Note that the signed distances of the vertices of T0 are never computed in thoses steps, it must a forgetting.

15



PDB Thesis Romain Maffina

6. If the plane equations of P0 and P1 are the same (or rather, within ∈), then compare
the d values to see if the planes are coincident (within ∈) :

- If coincident, then project the triangles onto the axis-aligned lane that is most nearly
oriented with the triangles’ plane, and perform a 2D triangle intersection test.2

- Otherwise, the parallel planes are not coincident, so no possible intersection; exit
the algorithm.

7. Compare the signs of distV
0,i , i ∈ {0, 1, 2}: if they are all the same, return false; otherwise,

proceed to the next step.

8. Compute intersection line.

9. Compute intervals.

- If no interval overlap, triangles don’t intersect. Return false.
- Otherwise, if intersecting line segment is required, compute it. In any case, return
true.

First I understood that the part where the intersection test was done was the point 6 and only there. A
2D intersection test using the method of separating axes. This is why I’ve first done it the way explained
above.

Then I realized, reading it again and again trying to understand what was wrong, that the standard
intersection test was performed in point 8 and 9. The point 6 explains how the algorithm have to handle
the special case of two triangles being in the same plane (coincident in a math speaking way) by doing
a special 2D intersection test.

Once I realized it I started to change the algorithm partly and code a second version of it. This second
version is detailed in the next section.

2The method of separating axes (Section 7.7) can be used to determine whether or not and intersection exists. Generally
speaking, [. . . ]

16



PDB Thesis Romain Maffina

(a) Front view (b) Back view

Figure 3.4: Example of a special triangle configuration that causes the algorithm to detect a false positive.

17



PDB Thesis Romain Maffina

3.2 Second version

Well as explained in the previous section, I misunderstood the Geometric Tools for Computer Graphics
book [2] I’m following to realize this triangle intersection tester and so my first version of the algorithm,
quiet logically, didn’t worked at 100%. Thus I started to modify it to get it working. This section will
present the second, corrected, version of the algorithm. I will now use, according to the GTCG [2, p.539],
the interval overlap method described by Möller and Haines as the main method to detect intersections.
The method used before in the first version of the algorithm is not lost and will be used to compute
intersections when the triangles are in the same plane. Indeed the interval overlap method don’t handle
this special case.

Let’s have a overview of the steps involved :

quick rejection test : As the first version, this first step already eliminates with a simple test pair of
triangles that cannot intersect. See section 3.1.1 for more details.

Intersection of P0 and P1 resulting in a line L : The goal is to obtains the line corresponding to
the intersection of P0 and P1. If the planes are parallels there is no intersection and so no line is
returned.

If the line exists we use the interval overlap method to check the intersections : Both trian-
gles will now be projected on L. Prior to the projection the vertices of each triangles needs to be
ordered. Each triangle’s projection will result in an interval on the line. If the intervals overlap,
then the triangles intersect, otherwise, they do not.

Else we use the method of separating axes : If L doesn’t exists this means that the planes are par-
allels. Thus we are in 2D world and we can use a 2D intersection test to check the intersections.
The method is used exactly as in the first version.

I will now present in the next sections the new parts of this second version.

3.2.1 Intersection of P0 and P1 resulting in a line L

The planes are defined as P : ~n, P and d, where ~n is a normal vector of the plane, P is a point on the
plane and d the distance from plane to origin. The line L is defined as a point P and a direction ~d.

The direction ~d can be easly computed by doing the cross product of the two plane’s normals :

~d = ~n1 × ~n2

Now we need a point on this line to completely specify it. Assuming that this point will be a linear
combination of ~n1 and ~n2 so :

P = a ~n1 + b ~n2

We can also say that the point will be on both planes so :

~n1 · P = s1

~n2 · P = s2

18



PDB Thesis Romain Maffina

s1 and s2 are the distance to origin for both planes.

We substitute and solve for a and b :

a = s2 ~n1 · ~n1 − s1|| ~n2||2

( ~n1 · ~n2)2 − || ~n1||2|| ~n2||2

b = s1 ~n1 · ~n1 − s2|| ~n1||2

( ~n1 · ~n2)2 − || ~n1||2|| ~n2||2

The line L is now fully defined.

19



PDB Thesis Romain Maffina

3.2.2 Projection of T0 and T1 on the line L

Here is used the interval overlap method described by Möller and Haines. The projection of each triangle
is done by projecting each of it vertices on the line L computed in the section 3.2.1.

Assuming the following : V0,0, V0,1 and V0,2 are the vertices of T0, the projection of each vertex is done
as following :

V ′
0,i = d̂ · (V0,i − P ), i ∈ {0, 1, 2}

Note that ~d, which is the direction vector of the line, must be normalized first.

20



PDB Thesis Romain Maffina

3.2.3 Order the vertices of each triangles prior to the projection on L

To get the Möller and Haines method working the vertices of each triangle must be ordered in a special
way. Indeed the algorithm assumes that in a standard situation vertices V0 and V1 lie on one side of
L, and the vertex V2 on the other side. Moreover the special cases (one point is on the line i.e.) need
some attention as well. So to respect theses constraints the vertices needs to be ordered prior to compute
the interval. The Figure 3.5 shows all possible placements relative to the line with the particular cases.
The working vertex configuration is shown in green for each case. Note that V0 and V1 can always be
swapped. Contrariwise V2 has to be placed exactly as shown in every cases.

The vertex configurations for the special cases are absolutely not treated in the book so I had to do a lot
of testing to see which configuration works with the algorithm and which don’t.

21



PDB Thesis Romain Maffina

L
t7

t6

t5

t4

t3

t2

t1

V0

V0

V0

V0

V0

V0

V0

V1

V1

V1

V1

V1
V1

V1

V2

V2

V2

V2
V2

V2

V2

Figure 3.5: All possible placements for a triangle relative to the line.

22



PDB Thesis Romain Maffina

3.2.4 Compute each triangle interval on L

Assuming the following : V0,0, V0,1 and V0,2 are the vertices of T0, the interval t0,0 to t0,1 of T0 is compute
as following :

t0,i = V ′
0,i + (V ′

0,2 − V ′
0,i)

distV0,i

distV0,i
− distV0,2

, i ∈ {0, 1}

The same is done to compute the interval t1,0 to t1,1 of T1. Now that we have both interval on L we
simply have to check if they overlap or not. If the answer is yes this means that the triangles intersect
otherwise not.

3.3 Test bench of the algorithm

Testing well this algorithm is quite a tricky job. Indeed the only way to approve the rightness of the
algorithm is to do a visual check. This means in my case using my eyes to check everything. Moreover
the number of possibilities is infinite for two triangles to be placed in a 3D space. This leads to the
fact that I simply cannot test everything. So to cover as much problematic possibilities as possible I’ve
decided to split my test bench in 2 parts. A random part and a special cases part.

3.3.1 Random tests

I’ve proceeded this way to check a maximum number of configurations : In my testing program, I generate
a fixed number of triangles (randomly sized) like 10 to 50 (while I can clearly see the intersections with
the reference triangle) at random positions around the reference triangle. Then I check if the triangles
that the algorithm has marked as intersecting (repaint in a orange color) are indeed visually intersecting.
Then the same is done for the triangles marked as not intersecting by the algorithm (grey color). When
I’ve checked everything and it’s O.K. I generate a new bunch of random triangles and check again.

When I see a problem, I store the coordinates of the problematic triangle and I change the testing program
to generate only the reference triangle and the problematic triangle. Then I try to locate the problem
using the debug mode and some visual helpers drawn with OpenGL like a triangle’s plane, the projected
triangle or the projection on the line, etc.

3.3.2 Special cases

To control more in depth the rightness of my algorithm, I’ve tested all the special cases mentioned in the
Figure 3.5 which shows all the vertex configurations of a triangle relative to the line L. This is because
the projection of the vertices is the critical part of the algorithm. The cases are presented in the figures
below using the minimalistic viewer I’ve developed (see Section 2.3.1 for more details about the viewer).
I’ve done a extra test in which the triangles are in the same plane because in this case the algorithm
don’t use the standard intersection test (the Möller and Haines one) but the 2D intersection test (using
the separating axes method) who has to be tested as well.

Note that all the cases tested are presented below while intersecting but of course I’ve controlled as well

23



PDB Thesis Romain Maffina

that, by moving the triangle step-by-step, once the triangles don’t visually intersect the algorithm "see"
the same as me and repaint the array triangle in grey.

24



PDB Thesis Romain Maffina

(a) t1 case. (b) t2 case. (c) t3 case.

(d) t4 case. (e) t5 case. (f) t6 case.

(g) t7 case. (h) t7 case. (i) Both triangles are in the same plane.

Figure 3.6: Special cases tested relative to the configurations presented in the Figure 3.5.

25



PDB Thesis Romain Maffina

26



Chapter 4

Port the C function to a CUDA
function

4.1 Toolkit version used

Currently the last stable version of the CUDA toolkit is the 4.2. Therefore I’v developed using this
version. See appendix A for more details on how to install CUDA.

4.2 Introduction to CUDA

4.2.1 Important keywords

Prior to anything it’s important to introduce a bit of vocabulary :

host : The CPU and the system’s memory

device : The GPU and its memory

kernel : A function that executes on the device

To write CUDA application we in fact write some standard C code but with some CUDA extensions,
here are explained some function qualifiers :

__global__ : To qualify a kernel, a function that executes on the device

__device__ : To qualify a function that will be called from a kernel

__host__ : To qualify a function that will be called from a host function

Here is a example of use : __device__ void sum(int a, int b, int *c){...}

27



PDB Thesis Romain Maffina

4.2.2 Device properties

The CUDA API provide a way to recover all the device properties. Here is a code snippet to demonstrate
how to recover for example the name of the device :

1 cudaDeviceProp devProp;

2 cudaGetDeviceProperties(&devProp, 0);

3 //...

4 char name[256] = devProp.name;

5 //...

Also an important aspect for a device is his Compute Capability, it’s a term used by NVIDIA to describes
the features supported by a CUDA-capable device. The compute capability specific properties can be
found on the Wikipedia page of CUDA [5].

4.2.3 General pattern of a CUDA application

Because the device has his own memory and he cannot access the host memory, the data need to be
copied from the host memory to the device memory prior to the kernel launch. For the same reason,
the resulting data needs then to be copied back to the host. All of this implies of course to allocate
the memory on the device before anything. So generally, in all CUDA application the general pattern is
always the same :

1. cudaMalloc() - We allocate memory on the device for in/out data according to our needs

2. cudaMemcpy(cudaMemcpyHostToDevice) - We copy data from host to device in the space we allocated
before

3. kernel<<<blocks,threads>>>() - We launch the kernel

4. cudaDeviceSynchronize() - We wait for the device to finish computation

5. cudaMemcpy(cudaMemcpyDeviceToHost) - We copy the result data back from device to host

6. cudaFree() - We free the memory on the device

You can see that the kernel launch is like a normal function call but with extras brackets. It’s here that
happens all the magic. The parameters passed using the brackets, the number of blocks and the number
of threads, configure the parallel execution that will be executed on the device. The next section will
talk a bit more about the kernel.

4.2.4 The kernel

As explained before a kernel is basically a function that executes on the device. Now to understand
where is hidden all the massive parallelism power let’s have a example.

We have a list of sums to compute, therefore we have 3 arrays of the same size. The first contains the
operand a, the second the operand b and the last array the result of each sum as c. The following snippet
shows a possible function to realize this using standard C code :

28



PDB Thesis Romain Maffina

1 void add(int *a, int *b, int *c, int size){

2 int i;

3 for(i=0;i<size;i++)

4 c[i]=a[i]+b[i];

5 }

The CPU will therefore execute each sum one after the other until he have computed everything.

The total theoretical execution time of this function is :

Ttotal = Tsum ∗ size

Now here is how the same function looks with CUDA C to take advantage of the massive parallelism
power of the GPU :

1 __global__ void add(int *a, int *b, int *c, int size){

2 int i = threadIdx.x;

3 if(i<size)

4 c[i]=a[i]+b[i];

5 }

6
7 void main(void{

8 //...

9 kernel<<<1,size>>>(a,b,c,size);

10 //...

11 }

Let’s review, one after the other, the changes relative to the CPU version. First, the __global__ qualifier
in front of the function header, this qualifier alerts the compiler that the following function is intended
to execute on the device instead of the host.

Then you may have noticed the lack of for loop! It has been replaced by a simple check to ensure that we
are not out of bound. Therefore you may ask yourself how can the array be fully computed if no more
for loop iterate them.

Well, let’s have a look at the kernel launch. As you can see two extras parameters are passed to the
function using the brackets, it’s respectively the number of blocks and the number of threads to use to
execute the function. I will give more details later about the blocks, for now we will stay with something
more familiar to every programmer : the threads. So by doing <<<1,size>>> I’m telling to the compiler
that I want to launch size numbers of parallel threads on the device to execute my function.

Now the last unexplained line in the code is int i = threadIdx.x; and hopefully this is the glue that
links everything. The threadIdx built-in CUDA variable indicates for each thread executing this code his
id. Assuming that size=4 figure 4.1 shows a representation of the 4 threads launched executing the code.

So each thread is responsible for computing one sum of the array.

Now the total theoretical execution time of this function is only the time spent to compute one sum :

Ttotal = Tsum

Obviously this is a theoretical time and the memory allocation and copy plus other things are not taken
in account.

29



PDB Thesis Romain Maffina

1 __global__ void

2 add(int *a, int *b, int *c, int size){

3 int i = 0;

4 if(i<size)

5 c[i]=a[i]+b[i];

6 }

(a) Code executed by thread 0

1 __global__ void

2 add(int *a, int *b, int *c, int size){

3 int i = 1;

4 if(i<size)

5 c[i]=a[i]+b[i];

6 }

(b) Code executed by thread 1

1 __global__ void

2 add(int *a, int *b, int *c, int size){

3 int i = 2;

4 if(i<size)

5 c[i]=a[i]+b[i];

6 }

(c) Code executed by thread 2

1 __global__ void

2 add(int *a, int *b, int *c, int size){

3 int i = 3;

4 if(i<size)

5 c[i]=a[i]+b[i];

6 }

(d) Code executed by thread 3

Figure 4.1: Representation of 4 GPU threads executing the code.

4.2.5 Using blocks and threads together

In the previous section I talked about blocks but without explaining anything, let’s see now what blocks
are :

Block 0 Thread 0 Thread 1 Thread 2 Thread 3 . . .

Block 1 Thread 0 Thread 1 Thread 2 Thread 3 . . .

Block 2 Thread 0 Thread 1 Thread 2 Thread 3 . . .

Block 3 Thread 0 Thread 1 Thread 2 Thread 3 . . .

. . . . . . . . . . . . . . . . . .

So a block can simply be seen as a collection of threads. It here to simplify the threads management,
for the developer as well as for the hardware. However one can ask why can’t I simply always use
threads? The answer is simple : you can’t launch as much threads as you want, each device have a
maximum threads per block limitation. For example on the machine I’m currently developing, I have
a NVS 4200M, the limitation is 1024. Therefore if I want to launch more than 1024 parallel running
threads I need to use blocks as well.

Still on my NVS 4200M the max number of blocks I can launch on a 1D grid1 is 65535. Therefore by
combining blocks and threads I can launch up to :

maxBlocks ∗maxThreads = 65535 ∗ 1024 = 67′107′840 parallel threads

Which is now a comfortable number of potential2 parallel computations!

1CUDA also allows to index a grid in 2D or 3D depending on the compute capabilities of the device. I only use 1D
indexing in my project so I won’t explain more about it.

2depending on the compute capabilities of the device

30



PDB Thesis Romain Maffina

4.2.6 Hardware architecture

Until now, I’ve presented CUDA from the software point of view, it’s time now to go a bit further
and see how the blocks, threads and resources are handled from the hardware point of view. Here is a
representation of the GPU architecture from http://www.tomshardware.com/ :

Thus the GPU is composed of SMs (stream processors) and each SM contains a number of SPs (processors
or also called CUDA cores by NVIDIA). The number of SM is dependant of the device hardware and the
number of SP per SM is defined by the Compute Capability of the device. Here is the list of corresponding
number of SPs relative to the Compute Capability:

CC SPs

1.0 8
1.1 8
1.2 8
1.3 8
2.0 32
2.1 48
3.0 192

When a kernel is launched the corresponding grid of blocks is passed to the GPU. Each SM will then
take care of one or more blocks until its maximum capacity, the remaining blocks are queued. A block
is completely treated by one and only one SM until it finish. He can then free the slot for one of the
remaining blocks waiting. This is done until all blocks of the grid have been treated. One can now

31

http://www.tomshardware.com/


PDB Thesis Romain Maffina

understand that despite an already important parallelization, not all the blocks will run concurrently.
This level of parallelization depends on the hardware capabilities of the device, its number of SM and SP.

Inside the SM the block threads will be split into warp. A warp is a set of 32 threads. Each SP will be
assigned witha warp to handle concurrently.

An also important thing to know is that each SM as a limited number of 32-bit registers and shared
memory to store the data used by the threads. The threads will need to share all these resources. This
can be a limitation to take in account to avoid the kernel launch to fail.

4.3 The ported function

The first CUDA version of the function simply use the general pattern for CUDA application presented
before and uses both blocks and threads to computes in parallel the collisions. Thus each thread will
be assigned with a triangle from the array and will compute the collision between this triangle and the
reference triangle to finally return the result.

See chapter 6 for detailed performance analysis.

32



Chapter 5

Optimize the function

5.1 A proper testing program

Before going any further I’ve decided to improve my way of testing the functions because it was becoming
too slight. First, I’ve improved my OpenGL viewer to help me developing and debugging more easily.
Here are the new features I’ve included :

• A help menu listing all the features and the corresponding shortcut

• the reference triangles can be moved around

• The origin axis can be displayed or hidden

• The triangle’s coordinates can be displayed

• The triangle’s id can be displayed

• A special cases mode as been includes to test directly all special cases configurations at once

• The user can switch between CPU and GPU for the collisions computation

• The number of triangles can be increased or decreased on the fly

Let’s have a look at this new version :

33



PDB Thesis Romain Maffina

And here is the special cases1 testing mode :

Then I’ve also developed a console benchmark to measure performances and being able to compare
different optimizations. The benchmark is simple : it generates a number of random triangles, measures
the time the GPU use to compute all the collisions with a reference triangle and then do the same for
the CPU. Finally the results are printed.

Here is how the console benchmark looks like :

1Based on the considerations made in the section 3.3.2

34



PDB Thesis Romain Maffina

In a sake of simplicity, the console benchmark and the OpenGL viewer has been merged in a single testing
program and the user can chose by command line which program to launch and with how much triangles.
More details on how to use the test program can be found in appendix C.

5.2 Optimize the common algorithm

You can optimize some code in multiple ways: memory footprint, executable size, speed, exception
handling, etc. In my case the only optimization I’m interested in is speed.

To let me appreciate the improvement that one or another modification brings I need to compare the
execution time after each of them. The benchmark is done by computing the collisions for 5M (millions)
triangles on a Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz while measuring the execution time between
the moment just before calling the function and the moment the program have just returned from the
function. The time elapsed is measured using the library <time.h> and the clock_t clock ( void );

function from it.

The results will be presented this way :

version M1 M2 M3 M4 M5 AVG delta gain total gain

The M1-5 are the measures taken, AVG is the average of the 5 measures, delta gain is the gain between
the version just before and the one presented. Finally the total gain is the global gain compared to the
reference version v1.0.

The command line used to launch the test program is :
1 > test-program.exe --benchmark -t 5000000

5.2.1 v1.0

This is the first working version of the algorithm. It’s already quite efficient because it’s based on good
techniques thanks to the book [2] I used. However some things can still be optimized, the following
sections will present you the optimizations done.

As this is the first version of the algorithm it will be used as reference performance index.

35



PDB Thesis Romain Maffina

version M1 M2 M3 M4 M5 AVG delta gain total gain

v1.0 7756 ms 7718 ms 7779 ms 7725 ms 7757 ms 7747.0 ms - -

5.2.2 v1.1

The different algorithm steps were slit into multiple functions. Here a new unique function is doing all
the job in a more comprehensive way. The structure of the function is even more based on the steps
given in the book [2, p.542].

version M1 M2 M3 M4 M5 AVG delta gain total gain

v1.1 7701 ms 7694 ms 7653 ms 7732 ms 7671 ms 7690.2 ms 0.74% 0.74%

5.2.3 v1.2

The distance between a vertex of a triangle and the plane of the other triangle was computed more than
one time in multiple functions while the value was always the same. Those signed distances are now
computed only once in the main algorithm function.

version M1 M2 M3 M4 M5 AVG delta gain total gain

v1.2 7298 ms 7271 ms 7246 ms 7278 ms 7249 ms 7268.4 ms 5.80% 6.58%

5.2.4 v1.3

The side of each vertex of a triangle relative to the plane of the other triangle (found by checking the
sign of the distance) is used in multiple places in the algorithm, in the quick reject test and then while
ordering the vertex. Sadly it was also computed in both places, now it is computed only once in the main
algorithm function.

version M1 M2 M3 M4 M5 AVG delta gain total gain

v1.3 7084 ms 7203 ms 7131 ms 7101 ms 7103 ms 7124.4 ms 2.02% 8.74%

5.2.5 v1.4

The planes of both triangles are needed in multiples places in the algorithm. However they were also
computed more than once, so they are now computed only once in the main algorithm function and
passed to the functions that need them.

version M1 M2 M3 M4 M5 AVG delta gain total gain

v1.4 6712 ms 6847 ms 6733 ms 6720 ms 6729 ms 6748.2 ms 5.57% 14.80%

5.3 Optimize the CUDA part

To let me appreciate the improvement that one or another modification brings I need to compare the
execution time after each of them. The benchmark is done by computing the collisions for 20M (millions)
triangles while measuring the execution time between the moment just before calling the function and

36



PDB Thesis Romain Maffina

the moment the program have just returned from the function. The time elapsed is measured using the
library <time.h> and the clock_t clock ( void ); function from it.

For the CUDA optimizations the machine used to test and compare the optimizations differ from the
previous section :

• Intel i7-2600K @ 3.4GHz (4 cores)

• 8.00 RAM

• 2x 590 GTX (bi-GPU)

On this machine, with the first working CUDA version based on the v1.4 of the common algorithm and
without any optimizations on the CUDA side the performances are already quite impressive2 :

M gain

CPU 8959 ms -
GPU 2462 ms 264%

See chapter 6 for detailed and complete performance analysis.

5.3.1 Split kernel launches

This is not really a performance optimization but it’s a trick I’m using to avoid aWindows security system.
This security system is part of the Windows Display Driver Model and is called Timeout Detection and
Recovery. It’s a protection to avoid frozen display in case of a GPU problem. It triggers if the OS have
no response of the GPU driver for 2 seconds. This is a good functionality for normal use, but because a
kernel occupies the device at 100% the TDR triggers and resets the GPU driver and therefore kills the
running kernels to recover the graphic card if it’s running for more than 2 seconds. It’s quiet annoying
because this limits a lot the interest of GPU computing.

The best solution is to deactivate this timeout when computing kernel with the GPU. To see how to do
this see appendix A.4.

However because not every one can maybe do it (no administrator rights, etc.) I’ve decided to find a
seamless solution using code. The idea is to split the unique kernel call that takes more than 2 seconds
into multiples sequential kernel calls that take less than 2 seconds each. But because kernel calls are
asynchronous, a cudaDeviceSynchronize(); must be placed after each kernel call to wait the end of the
kernel execution and therefore to ensure that the GPU driver as a little time between calls to response
again to the OS to avoid the protection to trigger.

Because the time a kernel takes to execute depends on the speed of the GPU, a kernel may be split into
too many calls if I don’t adapt it to the speed of the device. To do that I’ve based myself on the number
of CUDA cores of the device (which can be found in the devices properties, see section 4.2.2 for more
details) to theoretically evaluate the capabilities of the device. This allows me to always split the kernel
call into smaller ones that takes always just under 2 seconds each.

2Especially as the CPU of this machine is already very quick

37



PDB Thesis Romain Maffina

Using split kernels will also helps us to avoid the maximum blocks limitation of 65535 which can be
reached. Indeed with 128 threads per blocks for example we can compute 128 ∗ 65535 = 8.4M triangles
only.

The performance are the same using split kernel calls or unique kernel call which is a good thing. This
is due to the fact that, in reality on the hardware, the blocks (if a lot) will not all execute concurrently
on the device but only some. It depends on the hardware capabilities of the device. Thus the other ones
are queued waiting for being treated. So, when using split kernel call, we will simply do as the hardware
do, but using code.

5.3.2 Maximize hardware utilization

Unlike the title may indicates, this is not really an optimization. It’s more a wish of adapting the kernel
launch to run as well as possible no matter which device it is on. For that, the hardware specifications
of the device must be taken into account.

In the section 4.2.6 covering the hardware architecture a part is explaining the fact that each thread have
a limited number of registers to store his data. Because each thread will fully execute the kernel code,
each variable declaration in it will use some registers. For example declaring a 32-bit integer somewhere
in the code will use one of the 32-bit register, and so on. As the threads are running concurrently they
will need some registers at the same time.

To be more precise each stream processor, unit that will handle a block of threads, have a number of
registers available to share between all the threads running. Therefore more the kernel uses registers less
the number of threads launched per block could be high. Precisely in my case this limitation causes my
kernel launch to fail on some devices. Let’s see why :

I launch a kernel with 1024 threads per block on a NVS 4200 which is Compute Capability 2.1 to compute
the triangle-triangle collisions. The compiler option : --ptxas-options=-v allows me to find the number
of registers used by my kernel. In my case the algorithm uses 48 registers. So each thread will need 48
registers to run correctly. The NVS 4200 has, according to it Compute Capability 2.1, 32K of registers
per stream processor. So the 32K (32768) of registers will be shared between the threads.

(32768/1024 = 32) < 48?

The answer is clearly no. I don’t have enough registers available per thread. I have to either lower the
number of registers or to lower the number of threads launched. Because I can’t use less registers that
I’m already doing, I will need to lower the number of threads per block. In my case the maximum number
of threads per block is :

32768/48 = 682

Therefore if I launch blocks of 682 threads each, my kernel will now work. However this configuration
may not be optimal depending on the device, so let’s go a bit further.

To allows developer to maximize the performances of their CUDA applications, NVIDIA have provided
a tool to find the best launch configuration for each particular kernel and depending on the hardware.
This tool is called Occupancy Calculator and it can be found in the CUDA toolkit under tools/ or on
their website. Here is how it looks like :

38



PDB Thesis Romain Maffina

The most interesting plot of this tool is the one called Impact of Varying Block Size which allows to see,
for our specific kernel usage values, the best threads per block launch configuration. On the x-axis the
number of threads per block is represented while on the y-axis the multiprocessor occupancy is shown.
The higher the occupancy is, better it is. The screenshot above shows the plot for my kernel with my
NVS 4200. As you can see the occupancy at the limit of 682 threads calculated before is good. So I could
launch the kernel with this much threads.

However for an older CUDA-capable device, a 8800GT, the conclusion is not the same :

39



PDB Thesis Romain Maffina

The device have 8192 registers per multiprocessor so the maximum number of threads per block is :

8192/48 = 170

If I want to launch the kernel with this value as I’ve done before the occupancy would be very low this
time!

The solution I’ve chosen after having tested a variety of configuration is to use the power of two just
smaller than the limit calculated. So for the NVS 4200 it would be 512 threads per block and for the
8800GT it would be 128 threads per block. I found this solution very good because it optimizes well the
GPU occupancy for any kind of devices.

5.3.3 Use of host pinned memory - not applicable

When dynamically allocating data on the host, the use of malloc() is quite standard. When developing
CUDA applications it can be interesting to use CUDA version of the malloc(), cudaHostAlloc(). Multiple
types of memory can be allocated using this function but the default behaviour is to allocate pinned
memory, memory that cannot be swapped to the hard-drive. Being sure that the memory allocated this
way will never be swapped out, the CUDA driver tracks the memory addresses used and therefore the
device can directly access this memory to read and write faster than it would with standard malloc()

memory.

The use of cudaHostAlloc() is necessary to use streams (see next section) and also for the zero-copy
feature that allows to avoid the data copies from host to device and backward. The device directly access
to the host memory. It’s more efficient on devices which share the host memory with the CPU like
integrated graphic cards.

However in my case all of theses features can’t be used because I don’t know how the host memory has
been allocated when my function is called. It is certainly static memory allocation, or malloc allocation
but certainly not a memory space allocated with cudaHostAlloc() as I need it.

5.3.4 Staged concurrent copy and execute with streams - not applicable

This could be a very efficient way to reduce the global execution time of an algorithm running on the
GPU. The book I read on CUDA reported in his example a 21% improvement over the original version.[4,
p.210]

The principle is to create and launch on the device multiple streams of operations like memcpy, kernel
execution, etc. that will execute serially within a stream but simultaneous between the streams. Thus
every operation (even memcpy) are launched asynchronously at the beginning and then the device will
try, if it is capable, to run a memcpy of a stream at the same time as a kernel execution in another
stream.

So one understand that it’s a useful feature if the memcpy takes a considerable time to execute relative
to the kernel execution. Sadly this is not my case, indeed I’ve run my program with different number of
triangles 0.1M, 1M, 10M, etc. and all memcpy operations take always less than 1% time of the kernel
execution time.

40



PDB Thesis Romain Maffina

Therefore I’ve decided not to implement streams in my function as it would be a waste of time compared
to the improvement I may have.

5.3.5 Multi-GPU

CUDA allows the developer to use more than one graphic card if available. Prior to the version 4 of
CUDA this was a bit restrictive because a host CPU thread was required for each graphic device. I agree,
first this seams a good thing because each device management is well separated and the management code
is cleaner. However this means more complex code because of the threads creation and also a heavier
code to execute, it’s quiet long to create a host thread. From the version 4.0 and ahead a single host
thread can handle more than one graphic device. This is what I’ve chosen in my case because I prefer
fast code as clean code.

The general pattern to manage multiple devices is the following :
1 int device_count;

2 cudaGetDeviceCount(&device_count);

3 //...

4 int i;

5 for(i=0;i<device_count;i++){

6 cudaSetDevice(i);

7 //Specific operations on selected device (memcopy, kernel launch, etc.)

8 }

However doing it exactly like this will not takes advantage of the multiple devices. Indeed let’s assume
the operations are the following (in that order) :

1. memory allocation on the device

2. copy data from host to device

3. launch the kernel

4. copy result back from device to host

5. free memory

This leads us to the following code :
1 int device_count;

2 cudaGetDeviceCount(&device_count);

3 //...

4 int i;

5 for(i=0;i<device_count;i++){

6 cudaSetDevice(i);

7
8 cudaMalloc();

9 cudaMemcpy(cudaMemcpyHostToDevice);

10 kernel<<<blocks,threads>>>();

11 cudaDeviceSynchronize();

12 cudaMemcpy(cudaMemcpyDeviceToHost);

13 }

So as you can see in the code snippet above the for loop will run through each CUDA-capable device
thanks to the call to cudaSetDevice() at the beginning of each iteration. This call will define the active

41



PDB Thesis Romain Maffina

device for the following cudaXXX() calls. Therefore the first iteration of this loop will execute the 5
operations enumerated before for the device 0, then again for the device 1, and so on.

But if we have 4 CUDA-capable devices and we want to take advantage of the multi-GPU capabilities
we need to have the 4 kernels running in parallel. The solution with only one host thread that execute
the code sequentially is to do only asynchronous calls. And here is the problem, in the five operations
enumerated before only the kernel launch is asynchronous. However, because of other synchronous calls
(memory allocation, copy, etc.), the kernel launches will be delayed one from each other.

To avoid this, the solution I chosen is to use the following pattern :
1 int device_count;

2 cudaGetDeviceCount(&device_count);

3 //...

4 int i;

5 for(i=0;i<device_count;i++){

6 cudaSetDevice(i);

7
8 cudaMalloc();

9 cudaMemcpy(cudaMemcpyHostToDevice);

10 }

11
12 for(i=0;i<device_count;i++){

13 cudaSetDevice(i);

14
15 kernel<<<blocks,threads>>>();

16 }

17
18 for(i=0;i<device_count;i++){

19 cudaSetDevice(i);

20
21 cudaDeviceSynchronize();

22 cudaMemcpy(cudaMemcpyDeviceToHost);

23 }

As the kernel execution is clearly the most time consuming operation in my case, this solution is almost
optimal. Indeed the synchronous memory allocation and data copy are quickly executed on each devices.
Then the second for loop allows to asynchronously launch all the kernels, they will therefore execute in
parallel. Finally the last for loop will synchronize each device with the host and then copy the result
back.

M gain from single GPU gain from single CPU

GPU (4x) 1163 ms 111% 670%

See chapter 6 for detailed and complete performance analysis.

5.3.6 Debug to Release

When time came for me to prepare my code for release I had a very good surprise : the equivalent
execution times were a lot lower then I expected In single GPU computation I have a stratospheric gain
of 289% so quite 4 times faster! Here is an outline3 :

3Strangely in Release the multi-GPU version become useless as the single-GPU version is even quicker for all the values
tested. It’s however strongly dependant on the hardware and maybe on an other configuration the multi-GPU version could
be interesting.

42



PDB Thesis Romain Maffina

M gain from GPU (1x) gain fromGPU (4x) gain from single CPU

GPU (1x) release 633 ms 289% 84% 1315%
GPU (4x) release 701 ms 251% 66% 1178%

I have been surprised to see so much speed differences between Debug and Release compiled version so
I’ve tried to inform myself to find what was making the Debug version so slow.

Honestly it was hard to find a lot of informations but I was able to highlight two possible reasons :

• Some stack checks can be performed in Debug mode which can slow down the execution time a lot

• The code execution on the GPU in Debug mode is in some way synchronized with the host to
simplify the debugging so it became slower

43



PDB Thesis Romain Maffina

44



Chapter 6

Performance analysis

6.1 Algorithm optimizations

This is performance outline of the optimizations done to the common algrotihm in the section 5.2.

The benchmark is done by computing the collisions for 5M (millions) triangles on a Intel(R)
Core(TM) i7-2620M CPU @ 2.70GHz while measuring the execution time between the mo-
ment just before calling the function and the moment the program have just returned from
the function. The time elapsed is measured using the library <time.h> and the clock_t clock

( void ); function from it.

version M1 M2 M3 M4 M5 AVG delta gain total gain

v1.0 7756 ms 7718 ms 7779 ms 7725 ms 7757 ms 7747.0 ms - -
v1.1 7701 ms 7694 ms 7653 ms 7732 ms 7671 ms 7690.2 ms 0.74% 0.74%
v1.2 7298 ms 7271 ms 7246 ms 7278 ms 7249 ms 7268.4 ms 5.80% 6.58%
v1.3 7084 ms 7203 ms 7131 ms 7101 ms 7103 ms 7124.4 ms 2.02% 8.74%
v1.4 6712 ms 6847 ms 6733 ms 6720 ms 6729 ms 6748.2 ms 5.57% 14.80%

6.2 CUDA optimizations

This is performance outline of the CUDA optimizations done in the section 5.3.

To let me appreciate the improvement that one or another modification brings I need to
compare the execution time after each of them. The benchmark is done by computing the
collisions for 20M (millions) triangles while measuring the execution time between the moment
just before calling the function and the moment the program have just returned from the
function. The time elapsed is measured using the library <time.h> and the clock_t clock (

void ); function from it.

For the CUDA optimizations the machine used to test and compare the optimizations was this :

45



PDB Thesis Romain Maffina

• Intel i7-2600K @ 3.4GHz (4 cores)

• 8.00 RAM

• 2x GTX 590 (bi-GPU)

M diff gain from previous total gain

1x CPU 8959 ms - -
1x GPU 2462 ms 264% 264%
4x GPU 1163 ms 111% 670%

1x GPU release 633 ms 84% 1315%
4x GPU release 701 ms -10% 1178%

As mentioned in the section 5.3.6 the multi-GPU in release version is a bit slower than the single-GPU
release. I can’t understand well why but I imagine that, while single-GPU performances have increased
so much, the kernel computation become not enough heavy so the extra execution time due to the
multi-device management become too much weighty compared to the multi-GPU benefits. So the total
gain from single-CPU to single-GPU for 20M triangles computation is a whopping 1315% of speed gain,
therefore is more then 14 times quicker! The gap even increases with more triangles, the maximal gain
reaches 1432% (so more than 15 times quicker) when computing 35M between release version of the
single-CPU and the single-GPU.

6.3 Overview on a high-end machine

The measures have been taken on the following machine :

• Intel i7-2600K @ 3.4GHz (4 cores)

• 8.00 RAM

• 2x GTX 590 (bi-GPU)

46



PDB Thesis Romain Maffina

105 106 107

0

1

2

3

4

5

10

15

35M
Number of triangles

ti
m
e
sp
en
t

[s
ec

]
1x CPU

1x CPU release
1x GPU

1x GPU release
4x GPU

4x GPU release

This semilogx plot let’s well appreciate the astonishing performance of GPU computation. Until 1M
triangles the performances are quiet the same (even a little disadvantage for the GPUs) but from there,
while the time spent by the CPU is flighting away, all GPU versions keep a very acceptable time to
compute the quickly increasing number of triangles. Notice the great speed improvement of the Release
version of the code. The plot also clearly indicates that for bigger numbers then 35M the gap between
the CPU and the GPU would still grow. This is easily explained by the fact that the CPU evolution will
be linear because it is computing the collision sequentially while an added triangle collision to compute
for the GPU will simply be executed in parallel with the other ones so no extra time is spent. Practically,
even if very high, the number of parallel running threads on the GPU is though limited.1

It may be interesting to zoom on the left of the previous plot just to see how it is for low triangle count.
As you can see for 10’000 triangles the results are clearly disadvantaging the GPU version : 45 ms for the
CPU, 258 ms for the single-GPU version and 419 ms for the multi-GPU version. This clearly indicates
that, although the GPU versions are a lot quicker for heavier tasks, it’s very time consuming to prepare
the computation on the GPU (memory allocation, data copy, etc.) and so the CPU is quicker if we want
to compute a few collisions (under 1M).

1see section 4.2.6 for more details on the hardware architecture.

47



PDB Thesis Romain Maffina

105 105.2 105.4 105.6 105.8 106 106.2 106.4 106.6

0
0.1
0.2
0.3
0.4
0.5

1

2

106

Number of triangles

ti
m
e
sp
en
t

[s
ec

]

1x CPU
1x CPU release

1x GPU
1x GPU release

4x GPU
4x GPU release

This last chart let’s appreciate the results under a different light :

48



PDB Thesis Romain Maffina

100’000 500’000 1M 5M 7M 10M 20M 30M 35M
0

2

4

6

8

10

12

14

16

Number of triangles

ti
m
e
sp
en
t

[s
ec

]
1x CPU

1x CPU release
1x GPU

1x GPU release
4x GPU

4x GPU release

6.4 Overview on a 5 years old machine

Now let’s see how it looks on a 5 years old machine with one of the first CUDA-capable device.

The measures have been taken on the following machine :

• Intel Core2Duo E6850 @ 3.00GHz

• 4.00 RAM

• GeForce 8800 GT

The following plot and chart are voluntary plotted with the same view and ranges to help the comparison
with the previous ones.

49



PDB Thesis Romain Maffina

105 106 107

0

1

2

3

4

5

10

15

35M
Number of triangles

ti
m
e
sp
en
t

[s
ec

]
1x CPU

1x CPU release
1x GPU

1x GPU release

The results are here logically under the high-end computer speed but still the GPU gives very good
results especially in the release version. The gap between the Debug and the Release version is here even
bigger then in the previous section. In all cases this means that the function may take advantage of the
GPU over the CPU (if same age) no matter which CUDA-capable device it is.

Note that the plot stop at 10M triangles only because this GPU as too few memory to handle more than
that.

Like in the previous section here is the corresponding chart :

50



PDB Thesis Romain Maffina

100’000 500’000 1M 5M 7M 10M 20M 30M 35M
0

2

4

6

8

10

12

14

16

Number of triangles

ti
m
e
sp
en
t

[s
ec

]
1x CPU

1x CPU release
1x GPU

1x GPU release

The maximal gain here in release of the GPU version is 860% (so quite 10 times quicker). Note that
compared to the high-end machine with his huge GTX 590, this 8800GT isn’t doing much slower in
release version. For 10M triangles the GTX 590 is only 60% quicker so this quite old card is still doing
well.

51



PDB Thesis Romain Maffina

52



Chapter 7

Conclusion

7.1 Problems encountered

7.1.1 CUDA tools have no linker

A known limitation of the current stable CUDA toolkit version 4.2 is the lack of linker, this leads to the
fact that it’s not possible to split the functions used by the kernel into multiples files. All the functions
must be in the same file and qualified with __device__1 for CUDA compiler agrees to use them in the
kernel. I was annoyed by this because I wanted to use the same geometric functions I’ve developed as
well as the same intersection test algorithm for both CPU and GPU functions.

The workaround I’ve found is done in two steps : First to qualify the functions with both __host__ and
__device__ to indicates the CUDA compiler that theses functions are designed to run on the host as well
as on the device. Secondly to include the source file *.cu containing all the geometric functions directly
into the file that contains the kernel, this way the CUDA compiler have all the needed function at the
same place. This way the host function can also use the tools and they still are in a separate file for
better comprehension. Note that the file included must not be compiled because he already is through
the inclusion.

7.1.2 NVIDIA Developer Zone down

Another inconvenience is that from about July the 4 or 5 all the NVIDIA Developer Zone as been closed
due to attacks on the site. Here is the current message displayed when trying to access the Developer
Zone :

1This is a protection to prevent the possibility of calling any standard host library function on the device.

53



PDB Thesis Romain Maffina

This problem as been very painful for me because all forum topics are inaccessible and this was my main
information source when I was encountering problems. Therefore some times I’ve passed more time to
solve a problem just because the Developer Zone was inaccessible. The site was still down on July the
24.

7.1.3 Float rounding differences between CPU and GPU

I’ve encountered a quiet strange problem with floating point numbers that I was not able to solve. Indeed
in my console benchmark program I’ve tried to compared the results computed by both CPU and GPU
for the same triangle and this for to whole array to check if the results were always the same as it should.
Unfortunately, I discovered that it was not always the case. Indeed for a bunch of 1000 triangles I have
in average one mismatching result. By displaying each problematic triangle found I’ve discovered that
it always concern triangles who are close to touching or closely touch the reference triangle. It’s clearly
indicates a rounding problem. This may be caused by differences between floating precision of the CPU
and the GPU. With this idea in mind I checked that both would be working on single-precision floats
but despite the effort the problem remains. However good CUDA is IEEE 754 compliant for floating
operations.

Trying to find more informations about it I found a document written by NVIDIA about this subject.
[3] Here is extract of it:

When porting numeric code from the CPU to the GPU of course it makes sense to use the

54



PDB Thesis Romain Maffina

x86 CPU results as a reference. But differences between the CPU result and GPU result must
be interpreted carefully. Differences are not automatically evidence that the result computed
by the GPU is wrong or that there is a problem on the GPU.

More in details they explains also the following thing :

As we have explained, there are many reasons why the same sequence of operations may not
be performed on the CPU and GPU. The GPU has fused multiply-add while the CPU does
not. Parallelizing algorithms may rearrange operations, yielding different numeric results.

I conclude that it may not be a solvable problem and above all that it may not be so dramatic. Indeed
the problematic triangles are the ones who are already at the limit, so finally it doesn’t matter if they
are considered as intersecting or not because both results may be right as they are so closed.

7.2 Possible improvements

7.2.1 Multi-core CPU version

The CPU version of the function is now only a single-core version. So when comparing the result with
a multi-GPU version of the CUDA function this is not fully "comparable" even if it’s still informative.
Idealy a multi-core CPU version could have been interesting.

7.2.2 WDDM TDR workaround also available for multi-GPU

For now the workaround that allows to avoid the WDDM TDR protection to trigger is only avail-
able in single-GPU version (see section 5.3.1). This is because after each launch of a split kernel a
cudaDeviceSynchronize() is placed. Because currently a single host is launching all the kernels on the
devices, the calls needs to be asynchronous to take advantage of the multiple devices. This would not be
the case if a cudaDeviceSynchronize() is placed between each launch.

Therefore the only solution to avoid this problem is to have one host thread per device to manage. Thus
the split kernels workaround could be used even in multi-GPU execution of the CUDA function.

7.2.3 OpenCL

It has been discussed with Pixelux Entertainement to try to port also the algorithm to another technology
then CUDA if I had enough time. Sadly it was not the case but I though inform myself a bit on OpenCL.
OpenCL is a open standard to develop application that take advantage of parallel hardware. It like
CUDA do, but not only with NVIDIA GPU devices, but also with AMD/ATI hardware and so on.

For what I’ve seen the performances between the same CUDA code running in OpenCL are quite the
same. Moreover porting CUDA code to OpenCL code is not so much work because OpenCL is itself based
on CUDA. Tools even exist (for what I’ve seen only for linux at the moment) to port it automatically.
I’ve however not tested it.

Thus this could be an interesting improvement of this function.

55



PDB Thesis Romain Maffina

7.3 Last words

When I launched myself in this thesis I had no idea if the results would be interesting and even if the whole
function could works on the GPU, therefore I’m very satisfied with the results! The algorithm is robust
and reliable and the CUDA function achieves great performances compared to the CPU version. The best
performance ratio achieved is more then 15 times quicker for the GPU between a i7@3.4GHz and aGTX
590 with release code. An also good aspect is that the performances are still very interesting even on an
older machine : a ratio of 10 times quicker for the GPU is achieved between a Core2Duo E6850@3.00GHz
and a GeForce 8800GT with release code. Finally this project has been very informative and interesting
to realize. One of it great aspect is that it’s so simply defined while involving many different aspects and
being very complete and expansible.

56



Bibliography

[1] Pixelux Entertainement. About. http://www.pixelux.com/company.html, 2012.

[2] Philip J.Schneider and David H.Eberly. Geometric Tools for Computer Graphics. Morgan Kaufmann
Publishers, 2003.

[3] NVIDIA. Floating point and ieee 754 compliance for nvidia gpus. http://developer.download.
nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf.

[4] Jason Sanders and Edward Kandrot. CUDA By example. Edwards Brothers, 2011.

[5] Wikipedia. Cuda — wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.

php?title=CUDA&oldid=500305004, 2012. [Online; accessed 21-July-2012].

[6] Wikipedia. Gpgpu — wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.
php?title=GPGPU&oldid=502022507, 2012. [Online; accessed 24-July-2012].

57

http://www.pixelux.com/company.html
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://en.wikipedia.org/w/index.php?title=CUDA&oldid=500305004
http://en.wikipedia.org/w/index.php?title=CUDA&oldid=500305004
http://en.wikipedia.org/w/index.php?title=GPGPU&oldid=502022507
http://en.wikipedia.org/w/index.php?title=GPGPU&oldid=502022507


PDB Thesis Romain Maffina

58



Appendix A

Installing CUDA

A.1 Do you have a CUDA-capable device?

NVIDIA graphic cards built since 2006 and the GeForce 8800GTX are CUDA-capable, for the full list
see the Wikipedia page [5].

A.2 To use CUDA application

If the NVIDIA graphic card is CUDA-capable, then it’s sufficient to install the lastest available official
driver from NVIDIA website, the CUDA driver is included in it. However just in case it can be downloaded
separately at http://www.nvidia.com/content/cuda/cuda-downloads.html.

A.3 To develop CUDA applications

A.3.1 Minimum

By going to this url : http://www.nvidia.com/content/cuda/cuda-downloads.html again
one can download and install the CUDA toolkit which contains the compiler nvcc, libraries, headers,
etc. Optionally the CUDA SDK can be downloaded and installed as well, it contains a lot of useful code
examples.

Then, because a CUDA application runs on both CPU and GPU, a standard host C compiler is needed
as well. When we want to compile a application that contains CUDA C code, nvcc will obviously handle
on his own the device CUDA C code but he will then feed the standard C compiler with the regular C
host code.

A.3.2 With a IDE integration

NVIDIA provide also a integration of CUDA tools with Microsoft Visual Studio and Eclipse (at the
moment for Linux only) as well. It’s called NSight and can be downloaded by following this url :

59

http://www.nvidia.com/content/cuda/cuda-downloads.html
http://www.nvidia.com/content/cuda/cuda-downloads.html


PDB Thesis Romain Maffina

http://www.nvidia.fr/object/nsight.html

A.4 How to deactivate Windows GPU driver timeout

If the screen blink during kernel computation and a message is displayed by Windows to indicates that
the video driver wasn’t responding and has been reset, this means the WDDM TDR has trigger. See
section 5.3.1 for more details about this protection.

Here is two ways to deactivate this protection :

NSight installed This is the easier way

1. Open NSight Monitor application

2. Go to the options - General tab

3. Under Windows Display Driver set false for WDDM TDR enabled

NSight not intalled It’s a Windows registry modification

1. Windows key + R to open the execute windows

2. Type regedit

3. Go to HKLM\SYSTEM\CurrentControlSet\Control\GraphicsDrivers\

4. Add a new key DWORD named "TdrLevel" with value 0 or modify existing one

60

http://www.nvidia.fr/object/nsight.html


Appendix B

How to use the functions

Both CPU and GPU version of the function are provided to compute the collisions. Here are the steps
needed to use them in an existing program :

1. Add the sources files to the project or link the already compiled library provided

2. Include the detect-tri2tris-intersection.h to gain access to the functions

3. Configure the functions launches using the void config_set(uint8_t config); function (optional,
see below)

4. Call the functions to compute the collisions, both the CPU or the GPU version (if the machine
have a CUDA-capable device) can be used.

By default the functions will stop once the first collision is detected and the CUDA function will use the
workaround to avoid the WDDM TDR to trigger. However the following flags can be set :

COMPUTE_ALL_INTERSECTION Force the two intersect fct to compute intersections for the
whole array even if an intersection as already been detected

VERBOSE_MODE The functions will printf some text when error occurs

NO_WDDM_TDR_WORKAROUND By default the function avoid the Microsoft TDR to trig-
ger that kill the cuda kernel if it’s running for more then 2 sec by using a workaround. This flag
force the function to not use the workaround. Note that the workaround only working for a single
GPU computation.

FORCE_SINGLE_GPU_COMPUTATION Allow to force the use of a single device to compute
the intersections even if there is more then one CUDA-capable device, the first device will be used

Finally here is a example to demonstrate how to use the configuration function :

1 config_set( COMPUTE_ALL_INTERSECTION | VERBOSE_MODE );

61



PDB Thesis Romain Maffina

62



Appendix C

How to use the test program

The test program is composed of two smaller programs : a OpenGL viewer and a console benchmark.
The user can select, using the command line, which program to launch and with how much triangles.
The command line options are the following :

-h or –help to shows help.

-t or –triangles to specify the number of triangles. (default value is 10 triangles)

-b or –benchmark to run benchmark mode to compare CPU and GPU algorithm.

Here is a example of command line :
1 > test-program.exe --benchmark -t 5000000

If launched without any options the test program will launch the viewer with 10 triangles.

The viewer on his side shows the reference triangle in blue and the other triangles in gray. When a
collision is detected between the reference triangle and one of the triangles in array this last is painted
in orange. The viewer have the following shortcut :

h Show help

arrows Zoom/Rotate around

wasdqe Move the blue triangle

o Show origin axis

c Show triangle coord

i Show triangle id

t Switch to special cases mode

g Switch between CPU and GPU

+ Add a triangle

- Remove a triangle

space bar New random triangles

63



PDB Thesis Romain Maffina

64



Appendix D

Listing

D.1 Triangle-triangle intersection test algorithm

geometric-types.h

1 /**
2 * \file geometric-types.h

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Types definitions for geometric tools.

6 */

7
8 #ifndef GEOMETRIC_TYPES_H_

9 #define GEOMETRIC_TYPES_H_

10
11 #include <stdint.h>

12
13 /**
14 * @struct coord_t

15 * @brief Represent a point/vertex in a 3D space system.

16 */

17 typedef struct{

18 float x,y,z;

19 } coord_t;

20
21 /**
22 * @struct vector_t

23 * @brief Represent a vector in a 3D space system.

24 */

25 typedef struct{

26 float x,y,z;

27 } vector_t;

28
29 /**
30 * @struct triangle_t

31 * @brief Represent a triangle with 3 coordinates.

32 */

33 typedef struct{

34 coord_t p1,p2,p3;

35 } triangle_t;

65



PDB Thesis Romain Maffina

36
37 /**
38 * @struct line_t

39 * @brief Represent a line defined by a point and a direction.

40 */

41 typedef struct{

42 vector_t direction;

43 coord_t p;

44 } line_t;

45
46 /**
47 * @struct plane_t

48 * @brief Represent a plane defined by a point, a normal and the distance to zero.

49 */

50 typedef struct{

51 //!a point on the plane

52 coord_t p;

53 //!non-normalized

54 vector_t normal;

55 //!distance to zero coord

56 float d;

57 } plane_t;

58
59 #endif

geometric-tools.h

1 /**
2 * \file geometric-tools.h

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Toolbox with geometric tools.

6 */

7
8 #ifndef GEOMETRIC_TOOLS_H_

9 #define GEOMETRIC_TOOLS_H_

10
11 #include <math.h>

12 #include "geometric-types.h"

13
14 //!Dot product between two point/vector

15 #define dot(u,v) ((u).x * (v).x + (u).y * (v).y + (u).z * (v).z)

16 //! Norm of a vector

17 #define norm(v) sqrtf(dot(v,v))

18 //! Normalize a vector

19 #define normalize(r,v) (r).x = (v).x/norm(v);\

20 (r).y = (v).y/norm(v);\

21 (r).z = (v).z/norm(v);

22 //! Add a point/vector with another point/vector

23 #define add3d(r,a,b) (r).x = (a).x+(b).x;\

24 (r).y = (a).y+(b).y;\

25 (r).z = (a).z+(b).z;

26 //! Substract a point/vector with another point/vector

27 #define sub3d(r,a,b) (r).x = (a).x-(b).x;\

28 (r).y = (a).y-(b).y;\

29 (r).z = (a).z-(b).z;

30
31 #ifdef __cplusplus

32 extern "C"{

66



PDB Thesis Romain Maffina

33 #endif

34
35 void triangle_from_triangle(triangle_t r, triangle_t *t);

36 void triangle_from_coords(coord_t p1, coord_t p2, coord_t p3, triangle_t *t);

37 void triangle_from_value(float p1x, float p1y, float p1z,

38 float p2x, float p2y, float p2z,

39 float p3x, float p3y, float p3z,

40 triangle_t *t);

41
42 vector_t vector_by_scalar(vector_t v, float c);

43 vector_t vector_from_points(coord_t m, coord_t n, vector_t *mn);

44 vector_t cross(vector_t a, vector_t b, vector_t *result);

45 float point_to_plane_dist(coord_t p, plane_t pl);

46 plane_t triangle_to_plane(triangle_t t, plane_t *pl);

47 triangle_t triangle_proj_on_plane(triangle_t tri, plane_t pl, triangle_t *proj);

48 coord_t point_proj_on_line(coord_t p, line_t l, coord_t *p_bis);

49 void triangle_proj_on_line(triangle_t t, vector_t d, float *min, float *max);

50 uint8_t intersection_test_2d(triangle_t t0, triangle_t t1, plane_t pl);

51 uint8_t intervals_overlap(triangle_t T0, triangle_t T1, plane_t P0, plane_t P1, line_t L,

float dist_T0[], float dist_T1[], uint8_t signs_T0[], uint8_t signs_T1[]);

52 uint8_t planes_intersection(plane_t p1, plane_t p2, line_t *line);

53 void triangle_line_intersection_interval(triangle_t t, float dist[], uint8_t signs[],

line_t l, coord_t *t0, coord_t *t1);

54 void order_points(coord_t p[], float dist[], uint8_t sides[]);

55
56 #ifdef __cplusplus

57 }

58 #endif

59
60 #endif /* GEOMETRIC_TOOLS_H_ */

geometric-tools.cu

1
2 /**
3 * \file geometric-tools.cu

4 * \author Romain Maffina

5 * \version 1.0

6 * \brief Toolbox with geometric tools.

7 */

8
9 #include <stdio.h>

10 #include <math.h>

11
12 #include "geometric-tools.h"

13
14
15 //const coord_t zero_p = {0,0,0};

16 //const vector_t zero_v = {0,0,0};

17
18 /**
19 * @brief Create a triangle from another triangle.

20 *
21 * @param r the triangle to copy

22 * @param *t the resulting triangle

23 */

24 __host__ __device__ void triangle_from_triangle(triangle_t r, triangle_t *t){

25 t->p1.x=r.p1.x; t->p1.y=r.p1.y; t->p1.z=r.p1.z;

26 t->p2.x=r.p2.x; t->p2.y=r.p2.y; t->p2.z=r.p2.z;

67



PDB Thesis Romain Maffina

27 t->p3.x=r.p3.x; t->p3.y=r.p3.y; t->p3.z=r.p3.z;

28 }

29
30 /**
31 * @brief Create a triangle from 3 coords.

32 *
33 * @param p1 first coord

34 * @param p2 second coord

35 * @param p3 third coord

36 * @param *t the resulting triangle

37 */

38 __host__ __device__ void triangle_from_coords(coord_t p1, coord_t p2, coord_t p3,

triangle_t *t){

39 t->p1 = p1; t->p2 = p2; t->p3 = p3;

40 }

41
42 /**
43 * @brief Create a triangle from float values.

44 *
45 * @param p1x

46 * @param p1y

47 * @param p1z

48 * @param p2x

49 * @param p2y

50 * @param p2z

51 * @param p3x

52 * @param p3y

53 * @param p3z

54 * @param *t the resulting triangle

55 */

56 __host__ __device__ void triangle_from_value(float p1x, float p1y, float p1z,

57 float p2x, float p2y, float p2z,

58 float p3x, float p3y, float p3z, triangle_t *t){

59 t->p1.x=p1x; t->p1.y=p1y; t->p1.z=p1z;

60 t->p2.x=p2x; t->p2.y=p2y; t->p2.z=p2z;

61 t->p3.x=p3x; t->p3.y=p3y; t->p3.z=p3z;

62 }

63
64 /**
65 * @brief Multiply a vector by a scalar.

66 *
67 * @param v the vector

68 * @param c the scalar

69 * @return the resulting vector

70 */

71 __host__ __device__ vector_t vector_by_scalar(vector_t v, float c){

72 v.x *= c;

73 v.y *= c;

74 v.z *= c;

75 return v;

76 }

77
78 /**
79 * @brief Project a triangle on a plane.

80 *
81 * @param tri the triangle to project

82 * @param pl the plane to project on

83 * @param *proj the projected triangle

84 * @return the projected triangle

68



PDB Thesis Romain Maffina

85 * @see GTCG, section 12.1, page 663

86 */

87 __host__ __device__ triangle_t triangle_proj_on_plane(triangle_t tri, plane_t pl,

triangle_t *proj){

88 vector_t n;

89
90 //the plane normal needs to be normalized first

91 normalize(pl.normal,n);

92
93 sub3d(proj->p1,

94 tri.p1,

95 vector_by_scalar(n, dot(tri.p1,n)+pl.d) );

96
97 sub3d(proj->p2,

98 tri.p2,

99 vector_by_scalar(n, dot(tri.p2,n)+pl.d) );

100
101 sub3d(proj->p3,

102 tri.p3,

103 vector_by_scalar(n, dot(tri.p3,n)+pl.d) );

104
105 return *proj;

106 }

107
108 /**
109 * @brief Project a point on a line.

110 *
111 * @param p the point

112 * @param l the line to project on

113 * @param *p_bis the projected point

114 * @return the projected point

115 * @see GTCG, section 11.5.4

116 */

117 __host__ __device__ coord_t point_proj_on_line(coord_t p, line_t l, coord_t *p_bis){

118 vector_t v, d;

119 float t;

120
121 //the line normal needs to be normalized first

122 normalize(d, l.direction);

123
124 t = dot(d, vector_from_points(l.p,p,&v));

125 add3d(*p_bis, l.p, vector_by_scalar(d, t));

126
127 return *p_bis;

128 }

129
130 /**
131 * @brief Create a vector from two points.

132 *
133 * @param m the start point

134 * @param n the end point

135 * @param *mn the resulting vector

136 * @return the resulting vector

137 */

138 __host__ __device__ vector_t vector_from_points(coord_t m, coord_t n, vector_t *mn){

139 mn->x = n.x-m.x;

140 mn->y = n.y-m.y;

141 mn->z = n.z-m.z;

142

69



PDB Thesis Romain Maffina

143 return *mn;

144 }

145
146 /**
147 * @brief Cross product between two vectors

148 *
149 * @param a the first vector

150 * @param b the second vector

151 * @param *r the resulting vector

152 * @return the resulting vector

153 */

154 __host__ __device__ vector_t cross(vector_t a, vector_t b, vector_t *r){

155 r->x = a.y*b.z - a.z*b.y;

156 r->y = a.z*b.x - a.x*b.z;

157 r->z = a.x*b.y - a.y*b.x;

158
159 return *r;

160 }

161
162 /**
163 * @brief Point to plane distance.

164 *
165 * @param p the point

166 * @param pl the plane

167 * @return the distance

168 * @see GTCG, section 10.3.1, page 374

169 */

170 __host__ __device__ float point_to_plane_dist(coord_t p, plane_t pl){

171 vector_t v;

172 vector_from_points(pl.p,p,&v);

173
174 return dot(pl.normal, v);

175 }

176
177 /**
178 * @brief Obtains the plane of a triangle.

179 *
180 * @param t the triangle

181 * @param *pl the corresponding plane

182 * @return the corresponding plane

183 */

184 __host__ __device__ plane_t triangle_to_plane(triangle_t t, plane_t *pl){

185 vector_t v1, v2;

186 coord_t zero_p = {0.0f,0.0f,0.0f};

187
188 //Compute triangle’s normal and define the plane by cross product

189 vector_from_points(t.p1, t.p2, &v1);

190 vector_from_points(t.p1, t.p3, &v2);

191 cross(v1, v2, &(pl->normal));

192
193 //A triangle’s point is arbitrary chosen to define the plane

194 pl->p = t.p1;

195
196 //the distance to origin is computed

197 pl->d = point_to_plane_dist(zero_p, *pl);

198
199 return *pl;

200 }

201

70



PDB Thesis Romain Maffina

202 /**
203 * @brief Obtains the projection of a triangle on a line.

204 *
205 * @param t the triangle

206 * @param d the direction of the line

207 * @param *min the proj starting point

208 * @param *max the proj ending point

209 */

210 __host__ __device__ void triangle_proj_on_line(triangle_t t, vector_t d, float *min, float

*max){

211
212 int i;

213 float temp;

214 coord_t tri_points_array[3];

215
216 tri_points_array[0] = t.p1; tri_points_array[1] = t.p2; tri_points_array[2] = t.p3;

217
218 //base define of min and max

219 *min = *max = dot(d, t.p1);

220
221 //find the projection interval

222 for(i=1;i<3;i++){

223 temp = dot(d, tri_points_array[i]);

224 if(temp < *min)

225 *min = temp;

226 else if (temp > *max)

227 *max = temp;

228 }

229 }

230
231 /**
232 * @brief Obtains the interval on the line corresponding with the triangle-line

intersection. It’s

233 * part of the Moller and Haines algorithm.

234 *
235 * @param t the triangle

236 * @param dist[] the corresponding signed distances of the 3 points

237 * @param signs[] the side of each point relative to te line

238 * @param l the line

239 * @param *t0 the intersection starting point

240 * @param *t1 the intersection ending point

241 * @see order_points()

242 */

243 __host__ __device__ void triangle_line_intersection_interval(triangle_t t, float dist[],

uint8_t signs[], line_t l, coord_t *t0, coord_t *t1){

244
245 vector_t v;

246 float scalar;

247 coord_t p[3];

248
249 //Project the first triangle points on the line

250 point_proj_on_line(t.p1, l, &p[0]);

251 point_proj_on_line(t.p2, l, &p[1]);

252 point_proj_on_line(t.p3, l, &p[2]);

253
254 //Order points (necessary for the equations below to works)

255 order_points(p, dist, signs);

256
257 //Compute t0 coord

71



PDB Thesis Romain Maffina

258 vector_from_points(p[0], p[2], &v);

259 scalar = dist[0] - dist[2]==0?0:dist[0] / ( dist[0] - dist[2] );

260 v = vector_by_scalar(v, scalar);

261 add3d(*t0, p[0], v);

262
263 //Compute t1 coord

264 vector_from_points(p[1], p[2], &v);

265 scalar = dist[1] - dist[2]==0?0:dist[1] / ( dist[1] - dist[2] );

266 v = vector_by_scalar(v, scalar);

267 add3d(*t1, p[1], v);

268 }

269
270 /**
271 * @brief Realize a 2D intersection test between two triangles.

272 * Thus the test is realized on the same plane.

273 *
274 * This intersection test uses the method called The method of separating axes:

275 * First we need to find each normal of each edge of both triangles. Then we project

276 * both triangles on each normal (in fact the axis defined by the normal). If the

277 * projections overlap for the all 6 axis then the triangles intersect othewise not.

278 *
279 * @param t0 the first triangle

280 * @param t1 the second triangle

281 * @param pl the plane on which to project

282 * @return 1 = intersect, 0 = no intersection

283 */

284 __host__ __device__ uint8_t intersection_test_2d(triangle_t t0, triangle_t t1, plane_t pl){

285 int i; vector_t axis;

286 float min0, min1, max0, max1;

287
288 vector_t edges_array[6];

289
290 //We find and store each edge of both triangles to compute then,

291 //in the for loop, the normal of each edge.

292 vector_from_points(t0.p1, t0.p2, &edges_array[0]);

293 vector_from_points(t0.p2, t0.p3, &edges_array[1]);

294 vector_from_points(t0.p3, t0.p1, &edges_array[2]);

295 vector_from_points(t1.p1, t1.p2, &edges_array[3]);

296 vector_from_points(t1.p2, t1.p3, &edges_array[4]);

297 vector_from_points(t1.p3, t1.p1, &edges_array[5]);

298
299 for(i=0;i<6;i++){

300 //we compute the line on which we’ll project

301 cross( edges_array[i], pl.normal, &axis );

302 triangle_proj_on_line(t0, axis, &min0, &max0);

303 triangle_proj_on_line(t1, axis, &min1, &max1);

304
305 //check if the intervals don’t overlap and if so exit

306 if(max1<min0 || max0 < min1)

307 return 0;

308 }

309 return 1;

310 }

311
312 /**
313 * @brief Prepare (order) the three points of a triangle for the Moller and Haines

algorithm.

314 *
315 * @param p[] the triangle points

72



PDB Thesis Romain Maffina

316 * @param dist[] the corresponding distances from each point to the line

317 * @param sides[] the side of each point relative to the line

318 * @see triangle_line_intersection_interval()

319 */

320 __host__ __device__ void order_points(coord_t p[], float dist[], uint8_t sides[]){

321
322 coord_t p_tmp;

323 float dist_tmp;

324 int i=0;

325
326 //No point on the line = standard ordering (the point alone on his side is placed in

last position)

327 if(sides[2] == 0){

328
329 //if the point alone is negative

330 if(sides[0] == 2){

331 for(i=0;i<3;i++){

332 if(dist[i]<0){

333 p_tmp=p[2]; dist_tmp=dist[2];

334 p[2]=p[i]; dist[2]=dist[i];

335 p[i]=p_tmp; dist[i]=dist_tmp;

336 break;

337 }

338 }

339 }

340 //if the point alone is positive

341 else if(sides[1] == 2){

342 for(i=0;i<3;i++){

343 if(dist[i]>0){

344 p_tmp=p[2]; dist_tmp=dist[2];

345 p[2]=p[i]; dist[2]=dist[i];

346 p[i]=p_tmp; dist[i]=dist_tmp;

347 break;

348 }

349 }

350 }

351
352 }

353
354 //One point is on the line

355 else if(sides[2] == 1){

356 //the other points are on the same side of the line

357 if(sides[0] == 2 || sides[1] == 2){

358 for(i=0;i<3;i++){

359 if(dist[i]==0){

360 p_tmp=p[2]; dist_tmp=dist[2];

361 p[2]=p[i]; dist[2]=dist[i];

362 p[i]=p_tmp; dist[i]=dist_tmp;

363 break;

364 }

365 }

366 }

367 //One point is on one side and the other point on the other side

368 else if(sides[1]==1 && sides[0]==1){

369 //The last point is the one on the line, need to swap

370 if(dist[2]==0){

371 p_tmp=p[2]; dist_tmp=dist[2];

372 p[2]=p[0]; dist[2]=dist[0];

373 p[0]=p_tmp; dist[0]=dist_tmp;

73



PDB Thesis Romain Maffina

374 }

375 }

376 }

377 //Two point are on the line

378 else if(sides[2] == 2){

379 for(i=0;i<3;i++){

380 if(dist[i]==0){

381 p_tmp=p[2]; dist_tmp=dist[2];

382 p[2]=p[i]; dist[2]=dist[i];

383 p[i]=p_tmp; dist[i]=dist_tmp;

384 break;

385 }

386 }

387 }

388 }

389
390 /**
391 * @brief Test the intersection between two triangles using the Moller and Haines :

392 * the "interval overlap method".

393 *
394 * @param T0 the first triangle

395 * @param T1 the second triangle

396 * @param P0 the plane of T0

397 * @param P1 the plane of T1

398 * @param L the line on which to compute the interval

399 * @param dist_T0[] the signed distance for each point of T0 to P1

400 * @param dist_T1[] the signed distance for each point of T1 to P0

401 * @param signs_T0[] the side of each T0 point respect to P1

402 * @param signs_T1[] the side of each T1 point respect to P0

403 * @return 1 = intersection, 0 = no intersection

404 */

405 __host__ __device__ uint8_t intervals_overlap(triangle_t T0, triangle_t T1, plane_t P0,

plane_t P1, line_t L, float dist_T0[], float dist_T1[], uint8_t signs_T0[], uint8_t

signs_T1[]){

406
407 uint8_t overlap=0;

408 vector_t v, d;

409 coord_t T00, T01, T10, T11;

410 float t00, t01, t10, t11;

411 float min, max;

412
413 //the line direction vector needs to be normalized here first

414 normalize(d, L.direction);

415
416 //Compute for both triangles intersection with the line

417 triangle_line_intersection_interval(T0, dist_T0, signs_T0, L, &T00, &T01);

418 triangle_line_intersection_interval(T1, dist_T1, signs_T1, L, &T10, &T11);

419
420 /*
421 * here we compute each value for t00, t01, .. as the (signed) norm of the vector

422 * defined by the point P of the line and each intersection point computed before

423 */

424 vector_from_points(L.p, T00, &v);

425 t00 = dot(d,v);

426
427 vector_from_points(L.p, T01, &v);

428 t01 = dot(d,v);

429
430 vector_from_points(L.p, T10, &v);

74



PDB Thesis Romain Maffina

431 t10 = dot(d,v);

432
433 vector_from_points(L.p, T11, &v);

434 t11 = dot(d,v);

435
436 /* Check if the intervals computed before overlap or not */

437 min = t00<t01?t00:t01;

438 max = t01>t00?t01:t00;

439
440 if( (t10 >= min && t10 <= max) ||

441 (t11 >= min && t11 <= max)

442 ){

443 overlap=1;

444 }

445
446 min = t10<t11?t10:t11;

447 max = t11>t10?t11:t10;

448
449 if( (t00 >= min && t00 <= max) ||

450 (t01 >= min && t01 <= max)

451 ){

452 overlap=1;

453 }

454
455 return overlap;

456 }

457
458 /**
459 * @brief Find the resulting line of two planes intersection.

460 *
461 * @param pl1 the first plane

462 * @param pl2 the second plane

463 * @param *line the resulting line

464 * @return 1 indicate that the planes intersect

465 * 0 indicate that the planes don’t intersect (parallels)

466 * @see GTCG, section 11.5.1, page 529

467 */

468 __host__ __device__ uint8_t planes_intersection(plane_t pl1, plane_t pl2, line_t *line){

469 vector_t v;

470 float n1_n2_dot, n1_norm_sqr, n2_norm_sqr, a, b;

471
472 //the line direction

473 cross(pl1.normal, pl2.normal, &v);

474
475 //if planes are parallels -> return

476 if(v.x==0.0f && v.y==0.0f && v.z==0.0f){

477 return 0;

478 }

479 else

480 {

481 line->direction = v;

482
483 n1_n2_dot = dot(pl1.normal, pl2.normal);

484 n1_norm_sqr = dot(pl1.normal, pl1.normal);

485 n2_norm_sqr = dot(pl2.normal, pl2.normal);

486
487 a=0;b=0;

488 //scalars used to find a point on the line (it’s a linear combination of the two

planes normals)

75



PDB Thesis Romain Maffina

489 if((n1_n2_dot*n1_n2_dot - n1_norm_sqr * n2_norm_sqr)!=0){

490 a = (pl2.d * n1_n2_dot - pl1.d * n2_norm_sqr) / (n1_n2_dot*n1_n2_dot -

n1_norm_sqr * n2_norm_sqr);

491 b = (pl1.d * n1_n2_dot - pl2.d * n1_norm_sqr) / (n1_n2_dot*n1_n2_dot -

n1_norm_sqr * n2_norm_sqr);

492 }

493
494 //we define the line point

495 add3d(

496 line->p,

497 vector_by_scalar(pl1.normal, a),

498 vector_by_scalar(pl2.normal, b)

499 );

500
501 //Correction

502 line->p.x = -line->p.x;

503 line->p.y = -line->p.y;

504 line->p.z = -line->p.z;

505 }

506
507 return 1;

508 }

detect-tri2tris-intersection.h

1 /**
2 * \file detect-tri2tris-intersection.h

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Provide tools to detect intersections between triangles.

6 *
7 */

8
9 #ifndef __DETECT_TRI2TRIS_INTERSECTION_

10 #define __DETECT_TRI2TRIS_INTERSECTION_

11
12 #include "geometric-types.h"

13
14 //! Force the two intersect fct to compute intersections for the whole array even if an

intersection as already been detected

15 #define COMPUTE_ALL_INTERSECTION 0x01

16 //! The functions will printf some text when error occurs

17 #define VERBOSE_MODE 0x02

18 /** By default the function avoid the Microsoft TDR to trigger that kill the cuda kernel if

it’s running for more then 2 sec by using a workaround.

19 This flag force the function to not use the workaround. Note that the workaround only

working for a single GPU computation.

20 To manually deactivate the TDR trigger : HKLM\\SYSTEM\\CurrentControlSet\\Control\\

GraphicsDrivers\\ --> DWORD : TdrLevel = 0 */

21 #define NO_WDDM_TDR_WORKAROUND 0x04

22 //! Allow to force the use of a single device to compute the intersections even if there is

more then one CUDA-capable device, the first device will be used

23 #define FORCE_SINGLE_GPU_COMPUTATION 0x08

24
25 #ifdef __cplusplus

26 extern "C"{

27 #endif

28
29 void config_reset();

76



PDB Thesis Romain Maffina

30 void config_set(uint8_t config);

31 int8_t tri2tris_intersection_detect_gpu(triangle_t ref, triangle_t tri_array[], int

array_sz, uint8_t result_array[]);

32 int8_t tri2tris_intersection_detect_cpu(triangle_t ref, triangle_t tri_array[], int

array_sz, uint8_t result_array[]);

33
34 #ifdef __cplusplus

35 }

36 #endif

37
38 #endif

detect-tri2tris-intersection.cu

1 /**
2 * \file detect-tri2tris-intersection.cu

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Provide tools to detect intersections between triangles.

6 *
7 */

8
9 #include <stdio.h>

10 #include "detect-tri2tris-intersection.h"

11 #include "geometric-tools.cu" // Limitation, CUDA have no linker

12
13 /**********/

14 /* GLOBAL */

15 /**********/

16
17 //!configuration flags. @see config_set()

18 uint8_t flags = 0x00;

19
20 /**
21 * @brief Reset the configuration.

22 * @see config_set()

23 */

24 void config_reset(){

25 flags = 0x00;

26 }

27
28 /**
29 * @brief Set some configuration.

30 * @param config the configuration

31 * @see COMPUTE_ALL_INTERSECTION, VERBOSE_MODE, NO_WDDM_TDR_WORKAROUND,

FORCE_SINGLE_GPU_COMPUTATION, config_reset()

32 *
33 * Here is a example of use : config_set(VERBOSE_MODE | NO_WDDM_TDR_WORKAROUND);

34 *
35 * By default the tools run silent (no printf), try to compute on multiples GPU if possible

,

36 * don’t handle the TDR trigger problem and return once a intersection has been detected.

37 */

38 void config_set(uint8_t config){

39 flags |= config;

40 }

41
42 /**
43 * @brief Test the intersection between two triangles.

77



PDB Thesis Romain Maffina

44 *
45 * @param T0 the first triangle

46 * @param T1 the second triangle

47 * @return 0=don’t intersect

48 * 1=intersect

49 * @see The book "Geometric Tools for Computer Graphics", p.542

50 *
51 * This function is based on the outline given in the book.

52 */

53 __host__ __device__ uint8_t intersect(triangle_t T0, triangle_t T1){

54
55 plane_t P0, P1;

56 float dist_T0[3], dist_T1[3];

57 uint8_t signs_T0[3] = { 0 }, signs_T1[3] = { 0 };

58 line_t L;

59
60 /* 2.Compute the plane equation of T0 */

61 triangle_to_plane(T0, &P0);

62
63 /* 3.Compute the signed distances of T1 to P0 */

64 dist_T1[0] = point_to_plane_dist(T1.p1, P0);

65 dist_T1[1] = point_to_plane_dist(T1.p2, P0);

66 dist_T1[2] = point_to_plane_dist(T1.p3, P0);

67
68 /* Compute side of T1 vertices relative to P0 */

69 if( dist_T1[0] > 0) signs_T1[0]++; else if(dist_T1[0]<0) signs_T1[1]++; else signs_T1

[2]++;

70 if( dist_T1[1] > 0) signs_T1[0]++; else if(dist_T1[1]<0) signs_T1[1]++; else signs_T1

[2]++;

71 if( dist_T1[2] > 0) signs_T1[0]++; else if(dist_T1[2]<0) signs_T1[1]++; else signs_T1

[2]++;

72
73 /* 4. Quick reject if all vertices of T1 are on one side of P0 */

74 if(signs_T1[0] == 3 || signs_T1[1] == 3 )

75 return 0;

76
77 /* 5. Compute the plane equation of T1 */

78 triangle_to_plane(T1, &P1);

79
80 /* 6. See if planes are coincident to choose the correct intersection test */

81 if(planes_intersection(P0, P1, &L) == 0){

82 //planes are coincident = 2D intersection test by Separated Axes method

83
84 return intersection_test_2d(T0, T1, P0);

85 }

86 else{

87 //planes are not coincident = standard "interval overlap method" intersection test

88
89 /* Compute the signed distances of T0 to P1 */

90 dist_T0[0] = point_to_plane_dist(T0.p1, P1);

91 dist_T0[1] = point_to_plane_dist(T0.p2, P1);

92 dist_T0[2] = point_to_plane_dist(T0.p3, P1);

93
94 /* Compute side of T0 vertices relative to P1 */

95 if( dist_T0[0] > 0) signs_T0[0]++; else if(dist_T0[0]<0) signs_T0[1]++; else

signs_T0[2]++;

96 if( dist_T0[1] > 0) signs_T0[0]++; else if(dist_T0[1]<0) signs_T0[1]++; else

signs_T0[2]++;

78



PDB Thesis Romain Maffina

97 if( dist_T0[2] > 0) signs_T0[0]++; else if(dist_T0[2]<0) signs_T0[1]++; else

signs_T0[2]++;

98
99 /* 7. Quick reject if all vertices of T0 are on one side of P1 */

100 if(signs_T0[0] == 3 || signs_T0[1] == 3 )

101 return 0;

102
103 /* 8. Compute intersection line */

104 //already done in if

105
106 /* 9. Compute intervals */

107 return intervals_overlap(T0, T1, P0, P1, L, dist_T0, dist_T1, signs_T0, signs_T1);

108 }

109
110 }

111
112 /*************/

113 /* CPU STUFF */

114 /*************/

115
116 /**
117 * @brief CPU VERSION - Test the 3D intersection between a given triangle and each triangle

contained in the array passed

118 *
119 * @param ref the ref triangle

120 * @param tri_array[] the triangles array

121 * @param array_sz the size of the array

122 * @param result_array[] the result for each triangle in tri_array

123
124 * @return 0=no triangle of the array intersects the ref triangle,

125 * 1=at least one triangle of the array intersects the ref triangle

126 * -1=error

127 *
128 * This function is using exactly the same algorithm as tri2tris_intersection_detect_gpu()

129 * but it should be used only if the amound of triangles in array is less then 1M approx

then the tri2tris_intersection_detect_gpu()

130 * function become a lot quicker. It’s running on 1 core only.

131 */

132 int8_t tri2tris_intersection_detect_cpu(triangle_t ref, triangle_t tri_array[], int

array_sz, uint8_t result_array[]){

133 uint8_t x=0; //To remember a intersection occured, default=0

134
135 int i;

136 for(i=0;i<array_sz;i++){

137 result_array[i]=0;

138 if(intersect(ref, tri_array[i])){

139 x=result_array[i]=1;

140 if( !(flags & COMPUTE_ALL_INTERSECTION) )

141 break;

142 }

143 }

144
145 return x;

146 }

147
148 /**************/

149 /* CUDA STUFF */

150 /**************/

151

79



PDB Thesis Romain Maffina

152 /* Device variables */

153 //! Global on device (shared between GPU as well) intersect variable to know when a

intersection as been found

154 __device__ uint8_t dev_intersect;

155 //! Used to store the configuration on the device at function call

156 __constant__ uint8_t dev_flags;

157
158 /* Prototypes */

159 int ConvertSMVer2Cores(int major, int minor);

160 void slit_kernel_call(triangle_t* dev_ref, triangle_t* dev_tri_array, int size, int

nb_threads, uint8_t* dev_result_array);

161 __global__ void kernel(const triangle_t *ref, const triangle_t *tri_array, int array_sz,

uint8_t *result_array);

162
163
164 /**
165 * @brief Give the amount of CUDA cores of a device.

166 *
167 * @param major the major of the CUDA capability of a device

168 * @param minor the minor of the CUDA capability of a device

169 *
170 * Taken from the CUDA SDK Examples

171 */

172 int ConvertSMVer2Cores(int major, int minor){

173 // Defines for GPU Architecture types (using the SM version to determine the # of

cores per SM

174 typedef struct {

175 int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM

minor version

176 int Cores;

177 } sSMtoCores;

178
179 sSMtoCores nGpuArchCoresPerSM[] =

180 { { 0x10, 8 },

181 { 0x11, 8 },

182 { 0x12, 8 },

183 { 0x13, 8 },

184 { 0x20, 32 },

185 { 0x21, 48 },

186 { -1, -1 }

187 };

188
189 int index = 0;

190 while (nGpuArchCoresPerSM[index].SM != -1) {

191 if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) {

192 return nGpuArchCoresPerSM[index].Cores;

193 }

194 index++;

195 }

196 printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);

197 return -1;

198 }

199
200 /**
201 * @brief This function split a kernel call into multiple calls. This is used to avoid

Microsoft WDDM TDR to trigger.

202 *
203 * @param dev_ref the ref triangle

204 * @param dev_tri_array[] the triangles array

80



PDB Thesis Romain Maffina

205 * @param size the size of the array

206 * @param dev_result_array[] the result for each triangle in tri_array

207 *
208 * The WDDM TDR (Windows Display Driver Model - Timeout Detection and Recovery) is a

protection to avoid freezed display

209 * in case of a display driver fail. It trigger after 2sec if the graphic driver can’t

recover the hand on the graphic device.

210 * Because a kernel occupies the device at 100% the TDR trigger and kill the driver and the

running kernels to recover the

211 * graphic card. Thus this function allows to execute kernels longer then 2 secondes.

212 */

213 void slit_kernel_call(triangle_t* dev_ref, triangle_t* dev_tri_array, int size, int

nb_threads, uint8_t* dev_result_array){

214
215 cudaDeviceProp devProp;

216 cudaGetDeviceProperties(&devProp, 0);

217
218 /* Adapt values to the device for kernel launches */

219 int max_triangle_pro_kernel = ConvertSMVer2Cores(devProp.major,devProp.minor) * devProp

.multiProcessorCount*20000;

220 int nb_calls = (size+max_triangle_pro_kernel-1)/max_triangle_pro_kernel;

221
222 /* Launch the split kernels synchronously (due to the cudaThreadSynchronize) */

223 int i, launch_size = max_triangle_pro_kernel;

224 for(i=0;i<nb_calls;i++){

225
226 //If it’s the last call and a rest exist --> the size must be corrected

227 if(i==nb_calls-1 && size%max_triangle_pro_kernel != 0)

228 launch_size = size%max_triangle_pro_kernel;

229
230 //Launch the current split kernel and synchronize to avoid WDDM TDR to trigger

231 kernel<<<(launch_size+nb_threads-1)/nb_threads,nb_threads>>>(dev_ref, dev_tri_array

+i*max_triangle_pro_kernel, launch_size, dev_result_array+i*
max_triangle_pro_kernel);

232 cudaDeviceSynchronize();

233 }

234 }

235
236
237 /**
238 * @brief The kernel = the function that will execute on the device.

239 *
240 * @param ref the ref triangle

241 * @param tri_array[] the triangles array

242 * @param array_sz the size of the array

243 * @param result_array[] the result for each triangle in tri_array

244 */

245 __global__ void kernel(const triangle_t *ref, const triangle_t *tri_array, int array_sz,

uint8_t *result_array){

246
247 //if config is set to compute all intersection then the if block is always done,

248 //otherwise the computation is skipped once a intersection have been found

249 if( (dev_flags & COMPUTE_ALL_INTERSECTION) || !dev_intersect ){

250 //Calculate the index of the triangle for the current thread to compute

intersection

251 int i = blockIdx.x * blockDim.x + threadIdx.x;

252
253 //Control that we’re not out of the array

254 if(i<array_sz){

81



PDB Thesis Romain Maffina

255 //Default value = not intersecting

256 result_array[i]=0;

257 //Intersection test between the ref triangle and the current triangle from

array

258 if(intersect(*ref, tri_array[i]))

259 dev_intersect=result_array[i]=1;

260 }

261 }

262
263 }

264
265 /**
266 * @brief CUDA VERSION - Test the 3D intersection between a given triangle and each

triangle contained in the array passed

267 *
268 * @param ref the ref triangle

269 * @param tri_array_full[] the triangles array

270 * @param array_sz_full the size of the array

271 * @param result_array_full[] the result for each triangle in tri_array

272
273 * @return 0=no triangle of the array intersects the ref triangle,

274 * 1=at least one triangle of the array intersects the ref triangle

275 * -1=error

276 *
277 * This function is using exactly the same algorithm as tri2tris_intersection_detect_cpu()

278 * but it should be used only if the amound of triangles in array is more then 1M approx.

For smaller arrays

279 * the CPU version should be quicker. It can run on multi-GPU.

280 */

281 int8_t tri2tris_intersection_detect_gpu(triangle_t ref, triangle_t tri_array_full[], const

int array_sz_full, uint8_t result_array_full[]){

282
283 uint8_t intersect = 0;

284 uint8_t *ptr_dev_intersect;

285
286 triangle_t **tri_array = NULL;

287 uint8_t **result_array = NULL;

288 int *array_sz = NULL;

289 int *nb_threads = NULL;

290
291 triangle_t **dev_ref = NULL;

292 triangle_t **dev_tri_array = NULL;

293 uint8_t **dev_result_array = NULL;

294
295 int device_count;

296 cudaError_t cudaStatus;

297 char str_debug[100] = "";

298
299 // Get the device (=GPU) count to exploit them all

300 cudaGetDeviceCount(&device_count);

301 if(device_count==0)

302 goto Error;

303
304 // Force single GPU computation if configured

305 if(flags & FORCE_SINGLE_GPU_COMPUTATION)

306 device_count=1;

307
308 // Allocate arrays of host pointers to dataset for each GPU to compute

309 tri_array = (triangle_t**)calloc(device_count, sizeof(triangle_t));

82



PDB Thesis Romain Maffina

310 result_array = (uint8_t**)calloc(device_count, sizeof(uint8_t));

311 array_sz = (int*)calloc(device_count, sizeof(int));

312 nb_threads = (int*)calloc(device_count,sizeof(int));

313
314 // Allocate arrays of device pointers for the parameters

315 dev_ref = (triangle_t**)calloc(device_count, sizeof(triangle_t));

316 dev_tri_array = (triangle_t**)calloc(device_count, sizeof(triangle_t));

317 dev_result_array = (uint8_t**)calloc(device_count, sizeof(uint8_t));

318
319
320 /* Allocate memory on devices and then copy contents */

321 int i;

322 for(i=0;i<device_count;i++){

323
324 /* Compute device-specific pointers and sizes */

325 //if last device AND array size cannot by fully devided by the number of devices

326 if(i==device_count-1 && array_sz_full%device_count!=0)

327 array_sz[i] = array_sz_full/device_count + array_sz_full%device_count;

328 else

329 array_sz[i] = array_sz_full/device_count;

330
331 tri_array[i] = tri_array_full + (i*(array_sz_full/device_count) );

332 result_array[i] = result_array_full + (i*(array_sz_full/device_count) );

333
334
335 // Set the target device for the next cudaXXX calls

336 if( (cudaStatus = cudaSetDevice(i)) != cudaSuccess ){

337 sprintf(str_debug, "cudaSetDevice failed!"); goto Error;

338 }

339
340 cudaDeviceProp dev_prop;

341 cudaGetDeviceProperties(&dev_prop, i);

342 int max_threads=dev_prop.regsPerBlock/48;

343 nb_threads[i]=1;

344 while(nb_threads[i]*2<max_threads){

345 nb_threads[i] *= 2;

346 };

347
348 // Allocate ref triangle on device

349 if( (cudaStatus = cudaMalloc((void**)&dev_ref[i], sizeof(triangle_t))) !=

cudaSuccess ) {

350 sprintf(str_debug, "cudaMalloc failed for ref triangle!"); goto Error;

351 }

352
353 // Allocate array of triangles on device

354 if( (cudaStatus = cudaMalloc((void**)&dev_tri_array[i], array_sz[i] * sizeof(

triangle_t))) != cudaSuccess ) {

355 sprintf(str_debug, "cudaMalloc failed for array of triangles!"); goto Error;

356 }

357
358 // Allocate array for results

359 if( (cudaStatus = cudaMalloc((void**)&dev_result_array[i], array_sz[i] * sizeof(

uint8_t))) != cudaSuccess) {

360 sprintf(str_debug, "cudaMalloc failed for results array!"); goto Error;

361 }

362
363 // Copy ref triangle from host to device

364 if( (cudaStatus = cudaMemcpy(dev_ref[i], &ref, sizeof(triangle_t),

cudaMemcpyHostToDevice)) != cudaSuccess) {

83



PDB Thesis Romain Maffina

365 sprintf(str_debug, "cudaMemcpy failed for ref triangle!"); goto Error;

366 }

367
368 // Copy array of triangles from host to device

369 if( (cudaStatus = cudaMemcpy(dev_tri_array[i], tri_array[i], array_sz[i] * sizeof(

triangle_t), cudaMemcpyHostToDevice)) != cudaSuccess) {

370 sprintf(str_debug, "cudaMemcpy failed for triangles array!"); goto Error;

371 }

372 }

373
374 // Initialize global device intersect variable

375 cudaGetSymbolAddress((void **)&ptr_dev_intersect, "dev_intersect");

376 cudaMemset(ptr_dev_intersect,0,sizeof(uint8_t));

377
378 // Copy config flags to device

379 cudaMemcpyToSymbol("dev_flags", &flags, sizeof(flags));

380
381 /* Launch kernels */

382 if(device_count==1 && !(flags & NO_WDDM_TDR_WORKAROUND) ){

383 slit_kernel_call(dev_ref[0], dev_tri_array[0], array_sz[0], nb_threads[0],

dev_result_array[0]);

384 }else{

385
386 for(i=0;i<device_count;i++){

387 cudaSetDevice(i);

388
389 kernel<<<(array_sz[i]+nb_threads[i]-1)/nb_threads[i], nb_threads[i]>>>

390 (dev_ref[i], dev_tri_array[i], array_sz[i], dev_result_array[i]);

391 }

392 }

393
394 /* Synchronize host with devices and copy results back to host */

395 for(i=0;i<device_count;i++){

396 cudaSetDevice(i);

397
398 // cudaDeviceSynchronize waits for the kernel to finish

399 if( (cudaStatus = cudaDeviceSynchronize()) != cudaSuccess) {

400 sprintf(str_debug, "cudaDeviceSynchronize failed after launching addKernel!\n")

; goto Error;

401 }

402
403 // Copy results array from device to host

404 if( (cudaStatus = cudaMemcpy(result_array[i], dev_result_array[i], array_sz[i] *
sizeof(uint8_t), cudaMemcpyDeviceToHost)) != cudaSuccess) {

405 sprintf(str_debug, "cudaMemcpy failed for results array!"); goto Error;

406 }

407 }

408
409 // Recover the value of the global intersect variable

410 cudaMemcpyFromSymbol(&intersect, "dev_intersect", sizeof(uint8_t), 0,

cudaMemcpyDeviceToHost);

411
412 Error:

413 /* Free allocated memory on devices and handle errors if some */

414 for(i=0;i<device_count;i++){

415 cudaSetDevice(i);

416
417 cudaFree(dev_ref[i]);

418 cudaFree(dev_tri_array[i]);

84



PDB Thesis Romain Maffina

419 cudaFree(dev_result_array[i]);

420 }

421 if(flags & VERBOSE_MODE){

422 if(device_count==0){

423 printf("\n\nError : No devices found!\nExiting...\n\n");

424 return -1;

425 }

426 if (cudaStatus != cudaSuccess){

427 printf("\n\nCUDA have reported the following error : \"%s\"\n",

cudaGetErrorString(cudaStatus));

428 printf("Details : \"%s\"\nExiting...\n\n", str_debug);

429 return -1;

430 }else if(cudaPeekAtLastError() != cudaSuccess){

431 printf("\n\nCUDA have reported the following error : \"%s\"\n",

cudaGetErrorString(cudaGetLastError()));

432 return -1;

433 }

434 }

435
436 return intersect;

437 }

D.2 Test program

main.c

1 /**
2 * \file main.c

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Main, test program for triangle-triangle collisions.

6 */

7
8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <string.h>

11
12 #include "test-tools.h"

13 #include "console.h"

14 #include "viewer.h"

15
16 int main(int argc, char** argv){

17 int nb_triangles=10;

18 uint8_t console=0, help=0;

19
20 int i;

21 for(i=1;i<argc;i++){

22 if(!strcmp(argv[i], "-t") || !strcmp(argv[i], "--triangles") )

23 nb_triangles = atoi(argv[(i++)+1]);

24 else if(!strcmp(argv[i], "-b") || !strcmp(argv[i], "--benchmark") )

25 console=1;

26 else if(!strcmp(argv[i], "-h") || !strcmp(argv[i], "--help") )

27 help=1;

28 else{

29 printf("Error when parsing command line... exiting. Enter -h or --help

parameter.");

30 fflush(stdout);

85



PDB Thesis Romain Maffina

31 return EXIT_FAILURE;

32 }

33 }

34
35 if(help){

36 printf("This test program is composed of two smaller programs : a OpenGL viewer and

a console benchmark. It is intended to test the CPU and GPU (with CUDA)

version of a triangle-triangle intersection test algorithm.\n\n"

37 "Parameters:\n"

38 "\t -h or --help to shows help.\n"

39 "\t -t or --triangles to specify the number of triangles.\n"

40 "\t -b or --benchmark to run benchmark mode to compare CPU and GPU

algorithm.\n");

41 return EXIT_SUCCESS;

42 }

43 else if(console){

44 if(start_benchmark(argc, argv, nb_triangles)<0)

45 return EXIT_FAILURE;

46 return EXIT_SUCCESS;

47 }

48 else{

49 start_viewer(argc, argv, nb_triangles);

50 return EXIT_SUCCESS;

51 }

52 }

test-tools.h

1 /**
2 * \file test-tools.h

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Toolbox associated with the test-program.

6 */

7
8 #ifndef TEST_TOOLS_H_

9 #define TEST_TOOLS_H_

10
11 #include "geometric-types.h"

12
13 #define MAX_X 8

14 #define MAX_Y 8

15 #define MAX_Z 8

16 #define TRIANGLE_SZ 5

17
18 extern triangle_t *tri_array;

19 extern uint8_t *tri_result_array;

20 extern triangle_t ref;

21
22 int chrono();

23 int tri_generator(uint32_t size);

24 void free_memory();

25
26 #endif /* TEST_TOOLS_H_ */

test-tools.c

1 /**

86



PDB Thesis Romain Maffina

2 * \file test-tools.c

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Toolbox associated with the test-program.

6 */

7
8 #include <stdio.h>

9 #include <stdlib.h>

10 #include <time.h>

11 #include <math.h>

12
13 #include "test-tools.h"

14 #include "geometric-tools.h"

15
16
17 /* Global */

18 triangle_t *tri_array = NULL;

19 uint8_t *tri_result_array = NULL;

20 triangle_t ref;

21
22 /* Models */

23 triangle_t ref_base = { { 2.0f,-2.0f,4.0f}, { 1.0f,5.0f,-2.0f}, {1.0f,-3.0f,-3.0f} };

24 triangle_t ref_special_cases = { { 0,-2,6}, { 0,5,0}, {0,-3,0} };

25 triangle_t special_cases_array[10] = {

26 { {-2,-2,0}, {2,-3,0}, {3,-1,0} },

27 { {2,-1,0}, {-2,-1.5,0}, {-3,0,0} },

28 { {0,0,0}, {-2,0.5,0}, {-3,2,0} },

29 { {0,0.5,0}, {2,0,0}, {3,1,0} },

30 { {3,1.5,0}, {0,1,0}, {0,2,0} },

31 { {-3,3,0}, {0,2.5,0}, {0,3.5,0} },

32 { {-2,4.7,0}, {0,3.7,0}, {2,4.7,0} },

33
34 { {1.5,-3,5.5}, {-2,-2.00,5.5}, {1.5,0,5.5} }, //fully inside

35 { {2,0,0.5}, {-2,0,1.5}, {1,0,4} }, //fully inside

36
37 { {0,3,1}, {0,1,1.5}, {0,4,3} } //same plane

38 };

39
40 int chrono(){

41 static int call_count;

42 static clock_t start;

43
44 call_count++;

45
46 //second call, return the time lapse until last call

47 if(call_count%2==0){

48 return (clock()-start);

49 }

50 //first call, store the start time

51 else{

52 start = clock();

53 }

54 return 0;

55 }

56
57 //int tri_generator(triangle_t *tri_array[], uint8_t *tri_result_array[], uint32_t size){

58 int tri_generator(uint32_t size){

59 static uint32_t nb_calls, last_size;

60 uint8_t special_cases_mode=0;

87



PDB Thesis Romain Maffina

61 unsigned int i;

62 float x,y,z;

63
64 if(nb_calls==0)

65 srand(time(NULL));

66
67 //define reference triangle

68 triangle_from_triangle(ref_base, &ref);

69
70 //Handle special cases mode

71 if(size==0){

72 special_cases_mode=1;

73 size = sizeof(special_cases_array)/sizeof(triangle_t);

74 triangle_from_triangle(ref_special_cases, &ref);

75 }

76
77 if(size != last_size){

78 do{

79 tri_array = (triangle_t*)realloc(tri_array, sizeof(triangle_t)*size);

80 }while(tri_array==NULL && (size-=10));

81
82 tri_result_array = (uint8_t*)realloc(tri_result_array, sizeof(uint8_t)*size);

83 if(tri_result_array==NULL) return -1;

84 }

85
86 //define triangles

87 for(i=0;i<size;i++){

88 tri_result_array[i]=0;

89
90 if(special_cases_mode){

91 tri_array[i].p1.x = special_cases_array[i].p1.x; tri_array[i].p1.y =

special_cases_array[i].p1.y; tri_array[i].p1.z = special_cases_array[i].p1.

z;

92 tri_array[i].p2.x = special_cases_array[i].p2.x; tri_array[i].p2.y =

special_cases_array[i].p2.y; tri_array[i].p2.z = special_cases_array[i].p2.

z;

93 tri_array[i].p3.x = special_cases_array[i].p3.x; tri_array[i].p3.y =

special_cases_array[i].p3.y; tri_array[i].p3.z = special_cases_array[i].p3.

z;

94 }else{

95 //gen base coords

96
97 x=(rand()%(MAX_X*10)-MAX_X*10/2)/10.0f;

98 y=(rand()%(MAX_Y*10)-MAX_Y*10/2)/10.0f;

99 z=(rand()%(MAX_Z*10)-MAX_Z*10/2)/10.0f;

100 //assign coords to the triangle using base coord plus variance

101 tri_array[i].p1.x = x+rand()%TRIANGLE_SZ; tri_array[i].p1.y = y+rand()%

TRIANGLE_SZ, tri_array[i].p1.z = z+rand()%TRIANGLE_SZ;

102 tri_array[i].p2.x = x+rand()%TRIANGLE_SZ; tri_array[i].p2.y = y+rand()%

TRIANGLE_SZ, tri_array[i].p2.z = z+rand()%TRIANGLE_SZ;

103 tri_array[i].p3.x = x+rand()%TRIANGLE_SZ; tri_array[i].p3.y = y+rand()%

TRIANGLE_SZ, tri_array[i].p3.z = z+rand()%TRIANGLE_SZ;

104 }

105 }

106
107 last_size=size;

108 nb_calls++;

109
110 return size;

88



PDB Thesis Romain Maffina

111 }

112
113 void free_memory(){

114 free(tri_array);

115 free(tri_result_array);

116 }

viewer.h

1 /**
2 * \file viewer.h

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Minimalistic openGL viewer for triangle-triangle collision tester.

6 */

7
8 #ifndef OPENGL_TOOLS_H_

9 #define OPENGL_TOOLS_H_

10
11 #include <stdint.h>

12
13 extern void start_viewer(int argc, char** argv, uint32_t nb_tri);

14
15
16 #endif /* OPENGL_TOOLS_H_ */

viewer.c

1 /**
2 * \file viewer.c

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Minimalistic openGL viewer for triangle-triangle collision tester.

6 */

7
8 #include <stdio.h>

9 #include <GL/freeglut.h>

10 #include "viewer.h"

11 #include "test-tools.h"

12 #include "detect-tri2tris-intersection.h"

13 #include "geometric-tools.h"

14
15 /**
16 * @struct color_t

17 * @brief Represent a color in a RGB way.

18 */

19 typedef struct{

20 uint8_t R,G,B;

21 } color_t;

22
23 void draw_axis(void);

24 void opengl_draw_plane_from_triangle(triangle_t t, color_t c);

25 void opengl_draw_triangle(triangle_t t, color_t c, char* str);

26 void opengl_draw_line(line_t l, color_t c, uint8_t coeff);

27 void opengl_draw_segment(coord_t pt1, coord_t pt2);

28 void opengl_text_overlay(float x, float y, char *str);

29 void opengl_text_label(float x, float y, float z, void *font, const char *str);

30

89



PDB Thesis Romain Maffina

31 const color_t COLOR_BLUE = {0,0,255};

32 const color_t COLOR_GREY = {128,128,128};

33 const color_t COLOR_ORANGE = {255,160,0};

34 const color_t COLOR_RED = {255,0,0};

35 const color_t COLOR_BLACK = {0,0,0};

36
37 uint8_t cfg_show_help=0;

38 uint8_t cfg_show_origin=0;

39 uint8_t cfg_show_tri_coord=0;

40 uint8_t cfg_show_tri_id=0;

41 uint8_t cfg_show_planes=0;

42 uint8_t cfg_special_cases=0;

43 uint8_t cfg_use_cuda=0;

44
45 static uint32_t nb_triangles;

46
47 float angle_around_Z=0;

48 float zoom = 0.15f;

49
50 /**
51 * Draw at point (0;0;0) the 3 axis X,Y and Z.

52 */

53 void draw_axis(void){

54 glLineWidth(1);

55 glPushMatrix();

56 //glScalef(1,1,1);

57 glBegin(GL_LINES);

58 glColor3ub(0,0,255);

59 glVertex3f(0,0,0);

60 glVertex3f(1,0,0);

61 glColor3ub(0,255,0);

62 glVertex3f(0,0,0);

63 glVertex3f(0,1,0);

64 glColor3ub(255,0,0);

65 glVertex3f(0,0,0);

66 glVertex3f(0,0,1);

67 glEnd();

68 glPopMatrix();

69 }

70
71 /**
72 * Draw a corresponding triangle’s plane.

73 *
74 * @param t the triangle

75 * @param c the color of the plane

76 */

77 void opengl_draw_plane_from_triangle(triangle_t t, color_t c){

78 vector_t v1, v2;

79 vector_from_points(t.p1, t.p2, &v1);

80 vector_from_points(t.p1, t.p3, &v2);

81
82 glBegin(GL_QUADS);

83 glColor4ub(c.R,c.G,c.B, 32);

84 glVertex3f(t.p1.x + 10*(v1.x + v2.x), t.p1.y + 10*(v1.y + v2.y), t.p1.z + 10*(v1.z

+ v2.z));

85 glVertex3f(t.p1.x + 10*(v1.x - v2.x), t.p1.y + 10*(v1.y - v2.y), t.p1.z + 10*(v1.z

- v2.z));

86 glVertex3f(t.p1.x + 10*(-v1.x - v2.x), t.p1.y + 10*(-v1.y - v2.y), t.p1.z + 10*(-v1

.z - v2.z));

90



PDB Thesis Romain Maffina

87 glVertex3f(t.p1.x + 10*(-v1.x + v2.x), t.p1.y + 10*(-v1.y + v2.y), t.p1.z + 10*(-v1

.z + v2.z));

88 glEnd();

89 }

90
91 /**
92 * Draw a triangle.

93 *
94 * @param t the triangle

95 * @param c the triangle’s color

96 * @param *str the triangle name

97 */

98 void opengl_draw_triangle(triangle_t t, color_t c, char* str){

99 char str_coord[100];

100 coord_t mid;

101
102 glBegin(GL_TRIANGLES);

103 glColor3ub(c.R,c.G,c.B);

104 glVertex3d(t.p1.x, t.p1.y, t.p1.z);

105 glVertex3d(t.p2.x, t.p2.y, t.p2.z);

106 glVertex3d(t.p3.x, t.p3.y, t.p3.z);

107 glEnd();

108
109 if(cfg_show_tri_coord){

110 sprintf(str_coord, "(%.2f;%.2f;%.2f)", t.p1.x, t.p1.y, t.p1.z);

111 opengl_text_label(t.p1.x, t.p1.y, t.p1.z, GLUT_BITMAP_HELVETICA_10, str_coord);

112 sprintf(str_coord, "(%.2f;%.2f;%.2f)", t.p2.x, t.p2.y, t.p2.z);

113 opengl_text_label(t.p2.x, t.p2.y, t.p2.z, GLUT_BITMAP_HELVETICA_10, str_coord);

114 sprintf(str_coord, "(%.2f;%.2f;%.2f)", t.p3.x, t.p3.y, t.p3.z);

115 opengl_text_label(t.p3.x, t.p3.y, t.p3.z, GLUT_BITMAP_HELVETICA_10, str_coord);

116 }

117
118 if(cfg_show_tri_id && str!=NULL){

119 glColor3ub((c.R-100)%255,(c.G-100)%255,(c.B-100)%255);

120 mid.x = (t.p1.x + t.p2.x + t.p3.x)/3;

121 mid.y = (t.p1.y + t.p2.y + t.p3.y)/3;

122 mid.z = (t.p1.z + t.p2.z + t.p3.z)/3;

123 opengl_text_label(mid.x, mid.y, mid.z, GLUT_BITMAP_9_BY_15, str);

124 }

125
126 if(cfg_show_planes)

127 opengl_draw_plane_from_triangle(t, c);

128 }

129
130 /**
131 * Draw a line.

132 *
133 * @param l the line

134 * @param c the color of the line

135 * @param coeff size of the line

136 */

137 void opengl_draw_line(line_t l, color_t c, uint8_t coeff){

138
139 coord_t pt1, pt2;

140 vector_t d;

141
142 d.x = l.direction.x;

143 d.y = l.direction.y;

144 d.z = l.direction.z;

91



PDB Thesis Romain Maffina

145
146 //d = vector_by_scalar(l.direction, coeff);

147 d.x *= coeff;

148 d.y *= coeff;

149 d.z *= coeff;

150
151 add3d(pt1, l.p, d);

152 sub3d(pt2, l.p, d);

153
154 glBegin(GL_LINES);

155 glColor3ub(c.R,c.G,c.B);

156 glVertex3d(pt1.x, pt1.y, pt1.z);

157 glVertex3d(pt2.x, pt2.y, pt2.z);

158 glEnd();

159 }

160
161 /**
162 * Draw a segment.

163 *
164 * @param pt1 the first point

165 * @param pt2 the second point

166 */

167 void opengl_draw_segment(coord_t pt1, coord_t pt2){

168
169 glPointSize(7);

170 glBegin(GL_POINTS);

171 glColor3ub(255,0,0);

172 glVertex3d(pt1.x, pt1.y, pt1.z);

173 glVertex3d(pt2.x, pt2.y, pt2.z);

174 glEnd();

175 glBegin(GL_LINES);

176 glColor3ub(255,0,0);

177 glVertex3d(pt1.x, pt1.y, pt1.z);

178 glVertex3d(pt2.x, pt2.y, pt2.z);

179 glEnd();

180 }

181
182 /**
183 * Print an overlay string to the screen.

184 *
185 * @param x the x coordinate

186 * @param y the y coordinate

187 * @param *str the string to print

188 *
189 * @see From http://www.lighthouse3d.com

190 */

191 void opengl_text_overlay(float x, float y, char *str) {

192 char *c;

193
194 // switch to projection mode

195 glMatrixMode(GL_PROJECTION);

196
197 // save previous matrix which contains the

198 //settings for the perspective projection

199 glPushMatrix();

200
201 // reset matrix

202 glLoadIdentity();

203

92



PDB Thesis Romain Maffina

204 // set a 2D orthographic projection

205 gluOrtho2D(0, glutGet(GLUT_WINDOW_WIDTH), glutGet(GLUT_WINDOW_HEIGHT), 0);

206
207 // switch back to modelview mode

208 glMatrixMode(GL_MODELVIEW);

209
210 //set_orthographic_projection(glutGet(GLUT_SCREEN_WIDTH),glutGet(GLUT_SCREEN_HEIGHT));

211 glPushMatrix();

212 glLoadIdentity();

213
214 glColor3ub(255,0,0);

215 glRasterPos3f(x, y,0);

216 for (c=str; *c != ’\0’; c++) {

217 glutBitmapCharacter(GLUT_BITMAP_9_BY_15, *c);

218 }

219 //restore_perspective_projection();

220
221 glMatrixMode(GL_PROJECTION);

222 // restore previous projection matrix

223 glPopMatrix();

224
225 // get back to modelview mode

226 glMatrixMode(GL_MODELVIEW);

227 }

228
229 /**
230 * Label a point in the 3D space.

231 *
232 * @param x the x coordinate

233 * @param y the y coordinate

234 * @param z the z coordinate

235 * @param *font the font to use

236 * @param *str the string to use

237 *
238 * @see GLUT_BITMAP_ for available fonts

239 * @see From http://www.lighthouse3d.com

240 */

241 void opengl_text_label(float x, float y, float z, void *font, const char *str)

242 {

243 glDisable(GL_TEXTURE_2D);

244 glDisable(GL_DEPTH_TEST);

245 glRasterPos3f(x, y,z);

246
247 while(*str)

248 {

249 glutBitmapCharacter(font, *str);

250 str++;

251 }

252
253 glEnable(GL_TEXTURE_2D);

254 glEnable(GL_DEPTH_TEST);

255 }

256
257
258 void new_random_triangles(){

259 nb_triangles = tri_generator(nb_triangles);

260 if(cfg_use_cuda)

261 tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array);

262 else

93



PDB Thesis Romain Maffina

263 tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array);

264 }

265
266 void new_specials_triangles(){

267 nb_triangles = tri_generator(0);

268 if(cfg_use_cuda)

269 tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array);

270 else

271 tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array);

272 }

273
274 // -----------------------------------

275 // HANDLERS

276 // -----------------------------------

277
278 void keyboard_handle(unsigned char key, int x, int y){

279 static uint32_t previous_size;

280 switch(key){

281 case ’g’:

282 cfg_use_cuda=cfg_use_cuda==0?1:0;

283 break;

284 case 0x20:

285 if(cfg_special_cases==0)new_random_triangles();

286 break;

287 case ’h’:

288 cfg_show_help=cfg_show_help==0?1:0;

289 break;

290 case ’c’:

291 cfg_show_tri_coord=cfg_show_tri_coord==0?1:0;

292 break;

293 case ’i’:

294 cfg_show_tri_id=cfg_show_tri_id==0?1:0;

295 break;

296 case ’o’:

297 cfg_show_origin=cfg_show_origin==0?1:0;

298 break;

299 case ’p’:

300 cfg_show_planes=cfg_show_planes==0?1:0;

301 break;

302 case ’t’:

303 cfg_special_cases=cfg_special_cases==0?1:0;

304 if(cfg_special_cases){

305 previous_size=nb_triangles;

306 new_specials_triangles();

307 }else{

308 nb_triangles=previous_size;

309 new_random_triangles();

310 }

311 break;

312 case ’+’:

313 if(!cfg_special_cases){

314 nb_triangles++;

315 new_random_triangles();

316 }

317 break;

318 case ’-’:

319 if(!cfg_special_cases && nb_triangles>1){

320 nb_triangles--;

321 new_random_triangles();

94



PDB Thesis Romain Maffina

322 }

323 break;

324
325 /* Move ref triangle */

326 case ’e’:

327 ref.p1.z += 0.0625; ref.p2.z += 0.0625; ref.p3.z += 0.0625;

328 break;

329 case ’q’:

330 ref.p1.z -= 0.0625; ref.p2.z -= 0.0625; ref.p3.z -= 0.0625;

331 break;

332 case ’s’:

333 ref.p1.x += 0.0625; ref.p2.x += 0.0625; ref.p3.x += 0.0625;

334 break;

335 case ’w’:

336 ref.p1.x -= 0.0625; ref.p2.x -= 0.0625; ref.p3.x -= 0.0625;

337 break;

338 case ’a’:

339 ref.p1.y -= 0.0625; ref.p2.y -= 0.0625; ref.p3.y -= 0.0625;

340 break;

341 case ’d’:

342 ref.p1.y += 0.0625; ref.p2.y += 0.0625; ref.p3.y += 0.0625;

343 break;

344 }

345
346 if(cfg_use_cuda)

347 tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array);

348 else

349 tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array);

350
351 glutPostRedisplay();

352 }

353
354 void special_key_handle(int key, int x, int y){

355
356 switch(key){

357 case GLUT_KEY_UP:

358 zoom += 0.03f;

359 break;

360 case GLUT_KEY_DOWN:

361 zoom -= 0.03f;

362 break;

363 case GLUT_KEY_LEFT:

364 angle_around_Z -= 0.1f;

365 break;

366 case GLUT_KEY_RIGHT:

367 angle_around_Z += 0.1f;

368 break;

369 }

370
371 glutPostRedisplay();

372 }

373
374 void mouse_motion_handle(int x,int y){

375 static int last_x;

376
377 angle_around_Z += last_x-x<0 ? 3 : -3;

378 last_x = x;

379
380 glutPostRedisplay();

95



PDB Thesis Romain Maffina

381 }

382
383 void resize_handle(int w, int h) {

384 //Lighthouse

385
386 float ratio;

387 // Prevent a divide by zero, when window is too short

388 // (you cant make a window of zero width).

389 if(h == 0)

390 h = 1;

391 ratio = 1.0f* w / h;

392
393 // Use the Projection Matrix

394 glMatrixMode(GL_PROJECTION);

395
396 // Reset Matrix

397 glLoadIdentity();

398
399 // Set the viewport to be the entire window

400 glViewport(0, 0, w, h);

401
402 // Set the correct perspective.

403 gluPerspective(45,ratio,1,1000);

404
405 // Get Back to the Modelview

406 glMatrixMode(GL_MODELVIEW);

407 }

408
409 void display_handle(){

410 unsigned int i;

411 char str[100];

412 color_t c;

413
414 glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

415 glMatrixMode( GL_MODELVIEW );

416 glLoadIdentity( );

417 glEnable(GL_BLEND) ;

418 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;

419
420 gluLookAt(3,0,2,0,0,0.1,0,0,1);

421
422 glScalef(zoom, zoom, zoom);

423 glRotatef(angle_around_Z,0,0,1);

424
425 //We draw the ref triangle and his plane

426 opengl_draw_triangle(ref, COLOR_BLUE, "");

427
428 //We draw all the triangles in the array

429 for(i=0;i<nb_triangles;i++){

430 if(tri_result_array[i]) c=COLOR_ORANGE; else c=COLOR_GREY;

431 sprintf(str, "%d", i);

432 opengl_draw_triangle(tri_array[i], c, str);

433 }

434
435 //We draw the axis in 0,0,0

436 if(cfg_show_origin)

437 draw_axis();

438
439 opengl_text_overlay(5, 15,"[h] Show help");

96



PDB Thesis Romain Maffina

440 if(cfg_show_help){

441 opengl_text_overlay(5, 30,"[arrows] Zoom/Rotate around");

442 opengl_text_overlay(5, 45,"[wasdqe] Move the blue triangle");

443 opengl_text_overlay(5, 60,"[o] Show origin axis");

444 opengl_text_overlay(5, 75,"[c] Show triangle coord");

445 opengl_text_overlay(5, 90,"[i] Show triangle id");

446 opengl_text_overlay(5, 105,"[t] Switch to special cases mode");

447 opengl_text_overlay(5, 120,"[g] Switch between CPU and GPU");

448
449 if(!cfg_special_cases){

450 opengl_text_overlay(5, 135,"[+] Add a triangle");

451 opengl_text_overlay(5, 150,"[-] Remove a triangle");

452 opengl_text_overlay(5, 165,"[space] New random triangles");

453 }

454 }

455 sprintf(str, "Computed by %s", cfg_use_cuda?"GPU using CUDA":"CPU");

456 opengl_text_overlay(5, glutGet(GLUT_WINDOW_HEIGHT)-10, str);

457
458 //force display

459 glFlush();

460 }

461
462 // -----------------------------------

463 // INIT

464 // -----------------------------------

465
466 void start_viewer(int argc, char** argv, uint32_t nb_tri){

467
468 nb_triangles = nb_tri;

469
470 new_random_triangles();

471
472 /* Setting up configuration */

473 config_set( COMPUTE_ALL_INTERSECTION | VERBOSE_MODE | NO_WDDM_TDR_WORKAROUND);

474
475 printf("Starting OpenGL viewer...");

476 fflush(stdout);

477
478 /* OPENGL */

479 glutInit(&argc, argv);

480 glutInitWindowSize(glutGet(GLUT_SCREEN_WIDTH)/2,glutGet(GLUT_SCREEN_HEIGHT)/2);

481 glutInitWindowPosition(

482 (glutGet(GLUT_SCREEN_WIDTH)-glutGet(GLUT_INIT_WINDOW_WIDTH))/2,

483 (glutGet(GLUT_SCREEN_HEIGHT)-glutGet(GLUT_INIT_WINDOW_HEIGHT))/2);

484 glutCreateWindow("Triangles collision tester - viewer");

485
486 glEnable(GL_DEPTH_TEST); //zdepth

487 glClearColor(1.0f, 1.0f, 1.0f, 0.0f); //white background

488
489 // callbacks

490 glutKeyboardFunc(keyboard_handle);

491 glutSpecialFunc(special_key_handle);

492 glutDisplayFunc(display_handle);

493 glutMotionFunc(mouse_motion_handle);

494 glutReshapeFunc(resize_handle);

495
496 glutMainLoop();

497 }

97



PDB Thesis Romain Maffina

console.h

1 /**
2 * \file console.h

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Console testbench for triangle-triangle collision tester.

6 */

7
8 #ifndef CONSOLE_H_

9 #define CONSOLE_H_

10
11 #include <stdint.h>

12
13 int start_benchmark(int argc, char** argv, uint32_t nb_triangles);

14
15 #endif /* CONSOLE_H_ */

console.c

1 /**
2 * \file console.c

3 * \author Romain Maffina

4 * \version 1.0

5 * \brief Console testbench for triangle-triangle collision tester.

6 */

7
8 #include <stdlib.h>

9 #include <stdio.h>

10 #include <string.h>

11
12 #include "console.h"

13 #include "test-tools.h"

14 #include "geometric-tools.h"

15 #include "detect-tri2tris-intersection.h"

16
17 void print_first_results(uint8_t results[], int size);

18 void print_last_results(uint8_t results[], int size);

19
20
21 void print_first_results(uint8_t results[], int size){

22 int i, count;

23
24 count=size<25?size:25;

25 printf("first results : ");

26 for(i=0;i<count;i++)

27 printf("%d ", results[i]);

28 printf("\n");

29 }

30 void print_last_results(uint8_t results[], int size){

31 int i, count;

32
33 count=size<25?size:25;

34 printf("last results : ");

35 for(i=count;i>0;i--)

36 printf("%d ", results[size-i]);

37 printf("\n");

38 }

98



PDB Thesis Romain Maffina

39
40 int start_benchmark(int argc, char** argv, uint32_t nb_triangles){

41 uint8_t *tri_result_array_gpu = NULL;

42 triangle_t *tri_mismatch_array = NULL;

43 uint8_t *tri_mismatch_result_array = NULL;

44
45 uint32_t nb_triangles_last = nb_triangles;

46
47 printf("Welcome to this CPU and GPU benchmark of a triangle-triangle collision tester.\

n\n");

48
49 /* Generate random triangles and init result array */

50 printf("Generating %d random triangles...", nb_triangles);

51 fflush(stdout);

52
53 if( (nb_triangles=tri_generator(nb_triangles))<0 ){

54 printf("\n\nERROR : Host memory allocation failed!\n");

55 return -1;

56 }

57 if(nb_triangles_last==nb_triangles)

58 printf(" done.\n\n\n");

59 else

60 printf(" only %d triangles have been generated.\n\n\n", nb_triangles);

61 fflush(stdout);

62
63 tri_result_array_gpu = (uint8_t*)calloc(nb_triangles,sizeof(uint8_t));

64
65 /* Setting up configuration */

66 config_set( COMPUTE_ALL_INTERSECTION | VERBOSE_MODE );

67
68 /* Collisions computed with GPU */

69 printf("Computing collisions with GPU (CUDA)...");

70 chrono();

71 if(tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array_gpu)

!= -1){

72 printf("computed in %d ms.\n", chrono() );

73
74 print_first_results(tri_result_array_gpu, nb_triangles);

75 print_last_results(tri_result_array_gpu, nb_triangles);

76 }

77 else{

78 chrono();

79 printf("failed! An error occured.\n", chrono() );

80 return -1;

81 }

82
83 fflush(stdout);

84
85 printf("\n\n");

86
87 /* Collisions computed with CPU */

88 printf("Computing collisions with CPU...");

89 fflush(stdout);

90 chrono();

91 if(tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array) !=

-1){

92 printf("computed in %d ms.\n", chrono() );

93
94 print_first_results(tri_result_array, nb_triangles);

99



PDB Thesis Romain Maffina

95 print_last_results(tri_result_array, nb_triangles);

96 }

97 else{

98 chrono();

99 printf("failed! An error occured.\n", chrono() );

100 return -1;

101 }

102 printf("\n\n");

103 fflush(stdout);

104
105 free_memory();

106
107 return 0;

108 }

100


	Introduction
	Setting up
	Some considerations
	The chosen approach
	First steps
	The OpenGL viewer
	The vector library


	Develop the algorithm as a standard C function
	First version
	The quick rejection test
	Triangle projection on a plane
	2D intersection test
	Problem : Particular case not handled

	Second version
	Intersection of P0 and P1 resulting in a line L
	Projection of T0 and T1 on the line L
	Order the vertices of each triangles prior to the projection on L
	Compute each triangle interval on L

	Test bench of the algorithm
	Random tests
	Special cases


	Port the C function to a CUDA function
	Toolkit version used
	Introduction to CUDA
	Important keywords
	Device properties
	General pattern of a CUDA application
	The kernel
	Using blocks and threads together
	Hardware architecture

	The ported function

	Optimize the function
	A proper testing program
	Optimize the common algorithm
	v1.0
	v1.1
	v1.2
	v1.3
	v1.4

	Optimize the CUDA part
	Split kernel launches
	Maximize hardware utilization
	Use of host pinned memory - not applicable
	Staged concurrent copy and execute with streams - not applicable
	Multi-GPU
	Debug to Release


	Performance analysis
	Algorithm optimizations
	CUDA optimizations
	Overview on a high-end machine
	Overview on a 5 years old machine

	Conclusion
	Problems encountered
	CUDA tools have no linker
	NVIDIA Developer Zone down
	Float rounding differences between CPU and GPU

	Possible improvements
	Multi-core CPU version
	WDDM TDR workaround also available for multi-GPU
	OpenCL

	Last words

	Installing CUDA
	Do you have a CUDA-capable device?
	To use CUDA application
	To develop CUDA applications
	Minimum
	With a IDE integration

	How to deactivate Windows GPU driver timeout

	How to use the functions
	How to use the test program
	Listing
	Triangle-triangle intersection test algorithm
	Test program


