HEIG-VD

Haute Ecole d'Ingénierie et de Gestion de Canton de Vaud

B A CHELOR THESIS

GPU-accelerated triangle-triangle intersection tester algorithm

Author: Romain Maffina

Thesis Advisor: Stephan Robert
Mandator: Pixelux Entertainement

July the 27th, 2012

Specifications

The goal of the project is to develop a triangle-triangle collision algorithm. A reference triangle is given as well as a variably-sized array of many other triangles. The algorithm must check if one triangle intersects with the reference triangle. That operation has to be led for each "non-reference" triangle with the reference triangle. If one triangle intersects with the reference triangle the algorithm must return a true value, otherwise (if none of the triangles in the array intersects with the reference triangle) it must return a false value. The algorithm has to be as fast as possible. Therefore we are trying to use the capabilities of massively parallel computations with GPUs (Graphics Processing Units). In particular the NVIDIA technology was chosen. Therefore the implementation of the algorithm is done in CUDA C.

Here is the specifications given by Pixelux Entertainement on March 1st, 2012 :

The project is to build a CUDA-accelerated triangle-triangle intersection test. This could benefit our auto-cage tool that constructs watertight "cages" used for tessellation around geometry objects.

The project is defined as such:

1. Assume you have a triangle. A triangle is represented as a 2 D object but it is represented in 3D coordinates. So very simply defined as a set of 3 3D coordinates.
2. Assume you have a list of triangles that you will be comparing a single triangle to. I would imagine that in CUDA, this would ideally be represented as some sort of array.
3. Write a CUDA function that compares a single triangle to the list of triangles and returns True or False. True if the triangle intersects any of the triangles in the list, and False if it does not.

We prefer the code be written in " C " and, of course, CUDA.

Contents

1 Introduction 3
2 Setting up 5
2.1 Some considerations 5
2.2 The chosen approach 6
$2.3 \quad$ First steps 6
2.3.1 The OpenGL viewer 6
2.3.2 The vector library 9
3 Develop the algorithm as a standard C function 11
$3.1 \quad$ First version 11
3.1.1 The quick rejection test 11
3.1.2 Triangle projection on a plane 13
3.1.3 2D intersection test 13
3.1.4 Problem : Particular case not handled 15
3.2 Second version 18
3.2.1 Intersection of \mathcal{P}_{0} and \mathcal{P}_{1} resulting in a line \mathcal{L}. 18
$3.2 .2 \quad$ Projection of \mathcal{T}_{0} and \mathcal{T}_{1} on the line \mathcal{L}. 20
3.2.3 Order the vertices of each triangles prior to the projection on \mathcal{L} 21
3.2.4 Compute each triangle interval on \mathcal{L} 23
3.3 Test bench of the algorithm 23
3.3.1 Random tests 23
3.3.2 Special cases 23
4 Port the C function to a CUDA function 27
4.1 Toolkit version used 27
4.2 Introduction to CUDA 27
$4.2 .1 \quad$ Important keywords 27
$4.2 .2 \quad$ Device properties 28
4.2.3 General pattern of a CUDA application 28
4.2.4 The kernel 28
4.2.5 Using blocks and threads together 30
4.2.6 Hardware architecture 31
4.3 The ported function 32
5 Optimize the function 33
5.1 A proper testing program 33
5.2 Optimize the common algorithm 35
$5.2 .1 \quad \mathrm{v} 1.0$ 35
$5.2 .2 \quad \mathrm{v} 1.1$ 36
$5.2 .3 \quad$ v1.2 36
$5.2 .4 \quad \mathrm{v} 1.3$ 36
$5.2 .5 \quad \mathrm{v} 1.4$ 36
5.3 Optimize the CUDA part 36
5.3.1 Split kernel launches 37
5.3.2 Maximize hardware utilization 38
5.3.3 Use of host pinned memory - not applicable 40
5.3.4 \quad Staged concurrent copy and execute with streams - not applicable 40
5.3.5 Multi-GPU 41
5.3.6 Debug to Release 42
6 Performance analysis 45
6.1 Algorithm optimizations 45
6.2 CUDA optimizations 45
6.3 Overview on a high-end machine 46
6.4 Overview on a 5 years old machine 49
7 Conclusion 53
7.1 Problems encountered 53
7.1.1 CUDA tools have no linker 53
7.1.2 NVIDIA Developer Zone down 53
7.1.3 Float rounding differences between CPU and GPU 54
7.2 Possible improvements 55
7.2.1 Multi-core CPU version 55
7.2.2 WDDM TDR workaround also available for multi-GPU 55
7.2 .3 OpenCL 55
7.3 Last words 56
A Installing CUDA 59
A. 1 Do you have a CUDA-capable device? 59
A. 2 To use CUDA application 59
A. 3 To develop CUDA applications 59
A.3.1 Minimum 59
A.3.2 With a IDE integration 59
A. 4 How to deactivate Windows GPU driver timeout 60
B How to use the functions 61
C How to use the test program 63
D Listing 65
D. 1 Triangle-triangle intersection test algorithm 65
D. 2 Test program 85

Abstract

During this thesis, after having firstly developed a testing and viewing program to help me in my task, I've realized the algorithm to test the intersection between two triangles in a 3D space. This algorithm has been then integrated in a higher level function to meet the specifications of computing the intersection for each triangle of an array with a reference triangle. The function was first only developed for the CPU. Then, after many corrections and optimizations too ensure the rightness and speediness of the algorithm, I've tested to port the function to CUDA while forming myself about this technology. The first part of my thesis ends here.

Then, in the second full-time part of my thesis, I've ported the CPU version of the function to CUDA as cleanly as possible but above all trying to optimize it to make it as fast as I could. After that, the remaining time was dedicated to secure the function and make it reliable. At the same time, I've enhanced the functionality of my test program for that purpose.

Chapter 1

Introduction

In the past few years, a new computation power as been "discovered" for general-purpose computing. Discovered is maybe not exactly the good word, in fact, it already exists for a longer time, but no one had the idea to use it this way until a few years ago. The computation power I'm talking about is known as $G P G P U^{1}$ and is the means of using a $G P L^{2}$ to perform computation in general-purpose application that would have normally been handled by the $C P L^{3}$.

Last year, during summer university courses, I had an introduction to $C U D A^{4}$ technology invented by Nvidia Corporation. It's precisely a concrete way to implement GPGPU using the NVIDIA compatible end-user GPUs. The first SDK for CUDA as been released on February 2007. 5 The course interested me a lot as well as the idea of $G P G P U$, I thought this technology could be a future unavoidable way of programming and thus I'd like to see it diffused as much as possible.

Therefore, when the time come to me to choose a subject for my thesis, I quickly thought about GPGPU and CUDA technologies. So I contacted my professor, Stephan Robert, who gave me the CUDA course, and asked him if he would agree to be my thesis advisor for a thesis based on GPGPU. He gladly accepted and began to contact some companies to ask them if they were interested to parallelize with CUDA some part of their algorithm. Unexpectedly, a promising company, Pixelux Entertainement, answered affirmatively.
[1] In Febuary 2004, Pixelux Entertainment S.A. is founded in Geneva, Switzerland with the intent of developing technology that would automate art asset generation for video games through advanced simulation. To that end, the Company creates a unique real-time material physics simulation technology called "Digital Molecular Matter" or DMM.

Because they must handle very heavy tasks in their DMM, they were interested by the idea and they proposed me to build a CUDA-accelerated triangle-triangle intersection test. This could benefit their auto-cage tool that constructs watertight "cages" used for tessellation around geometry objects.

[^0]
Chapter 2

Setting up

2.1 Some considerations

The task given is very clear and simple to understand. It is however not so simple to realize and here are some important considerations :

First thing, there is not a unique way to realize a triangle-triangle intersection tester but a lot of different ways! The only thing they have in common is that they are all based on geometric tools. Also one can mix some parts of those different algorithms to realize it. Moreover, the algorithm could be more or less complicated, depending on how it must be quick and optimized (i.e. already eliminate triangles that can't intersect for sure) and so on. So I first decided to study some of theses algorithms to have a good overall understanding of what is possible to do and then decide a way to implement it. The searches I've done on the Internet were not very lucky, so I quickly tried to find a good reference book that could explains it to me in a more complete and comprehensive way. The book I've found is called Geometric Tools for Computer Graphics [2] and have a section who explain a way to check intersections between two triangles. I've decided to follow the steps they present.

Then, as mentioned before, a lot of geometry need to be used, especially the use of vectors and the associated operations. So I strongly preferred to develop a library for it. However Pixelux Entertainement said they prefer C code for the function, which is actually quiet good because CUDA is mostly used with C programming language, but it leads to an extra complication. Indeed C code is not very indicated to develop such a library with basic operations as plus, minus and so on because it don't have the operators overloading, the use of the library become a lot less intuitive.

Finally, I thought that developing such a tough algorithm directly in a CUDA way will probably always lead to a waste of time. It's the case because CUDA brings another abstract layer over the natural trickiness of the problem, in this way a tricky algorithm become a very tricky algorithm. Furthermore, as the standard function is written in C code, it's not such a lot of work to port it to CUDA. Finally, this allows me to do then a very interesting and useful thing : compare the same algorithm in both CPU and GPU version to see the gain CUDA brings. This could be very informative for Pixelux Entertainement to see if CUDA is interesting for them.

Now that the fullness of the job is better understood, let's organize it in the next section.

2.2 The chosen approach

Because of the considerations made before, I've decided to organize myself in this way :

1. Develop the algorithm as a standard C function using the CPU to compute the collisions
2. Modify then the C function to a CUDA function that will execute itself on the GPU
3. Optimize the algorithm

2.3 First steps

The first development step were to create a testing environment. So I've started by writing a random triangle array generator function and an other function to printf them. Then I quickly realized how hard it was to imagine how the triangles were placed in the 3D space and even to visualize the shape of each triangle by only reading a list of coordinates!

So my decision was quickly made : I needed to develop a minimalistic viewer to see the triangles in the 3D space and be able at least to rotate the camera around them. OpenGL came immediately to my mind to realize it.

2.3.1 The OpenGL viewer

Because the collision between two triangles can only be checked visually, a viewer is essential and necessary. It will be also very important during the test phase. The goal of this viewer is not to be very user-friendly or beautiful so it's minimalistic.

I think that it's not pertinent to explain how this viewer has been developed as it's only part of the test program. However here are some figures that show how it looks.

The Figure 2.1 shows a standard random test with 10 triangles generated randomly. The reference triangle is painted in blue. The algorithm then checks the collisions and marks each triangle that intersect with the reference triangle in orange and leave the other ones in grey. One can rotate around the Y axis with the mouse and zoom in/out with the keyboard. A new bunch of random triangles can be generated by pressing the space key.

The Figure 2.2 shows a debugging situation where a pair of triangle is isolated. The viewer draws also some helpers : the intersection of each triangle with the line \mathcal{L}, the intersection of the triangles planes.

The Figure 2.3 shows another debugging situation where triangle's planes are shown.

Figure 2.1: Example of the viewer with 10 triangles plus the reference triangle.

Figure 2.2: Example of the viewer with only a pair of triangles, used to debug.

Figure 2.3: Example of the viewer with a pair of triangles and they respective planes, used to debug.

2.3.2 The vector library

As the algorithm will use a lot of geometric concepts, I've decided to create a library to group them. It will contain the types definitions, the operations like dot product and some functions like a function to find the projection of a triangle on a plane, and so on.

I will not present this library here because it's "only" some mathematics tools, the full source code listing can be found in appendix D.1.

Chapter 3

Develop the algorithm as a standard C function

3.1 First version

This implementation is based on the steps proposed in the book Geometric Tools for Computer Graphics [2, p.542] and here is an overview of what I will going trough :
quick rejection test : This first step already eliminate with a simple test pair of triangles that cannot intersect.
triangle projection on other triangle plane : The goal of this is to pass from the 3 D world to a "simpler" 2D world.

2D intersection test : Now that we're in a 2D world we can perform a "simple" 2D intersection test.

3.1.1 The quick rejection test

Given two triangles \mathcal{T}_{0} and \mathcal{T}_{1}, the goal is to do an early check and already eliminate pairs of triangles that cannot intersect. Indeed, if all vertices of T_{0} are all on the same side of T_{1} plane or vice-versa, we already can say that the two triangles can't intersect so it's useless to go further. The figure 3.1 illustrate this : the blue triangle is entirely on the same side of the red triangle's plane so we already can eliminate this pair. Note that in this case you cannot decide to eliminate the pair with the reverse test because the red triangle intersects the blue plane.

To do this check, I compute for each vertex of the triangle the signed distance of this vertex to the plane. [2, p.374] This way, a positive value indicates that the vertex is on side A of the plane, a negative value indicate that the vertex is on side B of the plane and a zero indicate that the vertex lies exactly on the plane. Thus, if the distances are both positive and negative, the pair is kept as well as if one or more distances are zero. Otherwise the pair is rejected.

The signed distance is computed as following : We consider a point Q and a plane $\mathcal{P}:\{P, \vec{n}\}$, where \vec{n}

Figure 3.1: Blue triangle is entirely on one side of the red triangle's plane

is a normal vector of the plane and P is a point on \mathcal{P}.

$$
\text { dist }=\vec{n} \cdot \overrightarrow{P Q}
$$

The triangle's plane is compute as following : We consider a triangle \mathcal{T} and his 3 points : t_{0}, t_{1}, t_{2}. The plane is defined as $\mathcal{P}: \vec{n}, P$ and d, where \vec{n} is a normal vector of the plane, P is a point on the plane and d the distance from plane to origin.

$$
\begin{gathered}
\vec{n}=t_{0} \vec{t}_{1} \times t_{0} \vec{t}_{2} \\
P=t_{0}
\end{gathered}
$$

$d=$ distance from plane to origin, see above

3.1.2 Triangle projection on a plane

The projection of the triangle onto the plane is actually a vertex projection onto a plane done three times. [2] p.663] So we consider the projection Q^{\prime} of a point Q onto a plane \mathcal{P}. The plane is defined as $\mathcal{P}: \vec{n}, P$ and d, where \vec{n} is a normal vector of the plane, P is a point on the plane and d the distance from plane to origin. The projected Q^{\prime} point is computed as following :

$$
Q^{\prime}=Q-(Q \cdot \hat{n}+d) \hat{n}
$$

Note that here it's important to use \hat{n}, the \vec{n} vector normalized.

3.1.3 2D intersection test

The method I used to realize a 2D intersection test is the one called The method of separating axes. This method can only test convex polygons and here is the mathematical fundamental on which the method is based :
[2] p.265] If there exists a line for which the intervals of projection of the two objects onto that line do not intersect, then the objects do not intersect. Such a line is called a separating line or, more commonly, a separating axis.

Figure 3.2 shows examples of non-overlapping and overlapping projections on a random separating axis.
In fact only a finite number of separation axis needs to be considered for this test. It's only the separation axis defined by each normal of each edge of both triangles. So we have to consider only 6 separation axis as shown in Figure 3.3 On each of them we will project both triangles and check if they are separated or not along the axis. Separated means that the projections of the two triangles don't overlap. If on all 6 tested axis the projections overlap then the two triangles intersect, otherwise, if one or more of the six axis shows non-overlapping projections, then the two triangles don't intersect.

Figure 3.2: Examples for non-overlapping and overlapping projections.

Figure 3.3: Example of 2 triangles and the 6 separations axes to consider for the test.

3.1.4 Problem : Particular case not handled

Coming to the very end of the realization of this algorithm and after testing it a problem appears to me : there is a very particular case in which the algorithm detects a false positive. Figure 3.4 shows one among many other triangles configurations that causes that.

To explain why a false positive is detected let's take again the main steps of the whole algorithm and applies to them our example.

Quick rejection test : \mathcal{T}_{1} with \mathcal{P}_{0}

Two vertices of \mathcal{T}_{1} lies on one side of \mathcal{P}_{0} and the last vertex lies on the other side so the pair is not rejected.

Quick rejection test : \mathcal{T}_{0} with \mathcal{P}_{1}

Two vertices of \mathcal{T}_{0} lies on one side of \mathcal{P}_{1} and the last vertex lies on the other side so the pair is not rejected as well.

2D intersection test on \mathcal{P}_{0}

After projecting \mathcal{T}_{1} on \mathcal{P}_{0} we do a 2 D intersection test following the method of separating axis. The problem appears when we project \mathcal{T}_{1} on \mathcal{P}_{0}, indeed while the two triangles do not intersect when they are in a 3 D world they do when they are in a 2 D world! Thus the 2 D intersection test return true and so all the conditions are gathered to mark this pair of triangles as intersecting when they aren't in fact... The problem is exactly the same if you do the reversed 2D intersection test with \mathcal{T}_{0} projected on \mathcal{P}_{1}.

First I did some attempt to find a workaround to this problem but I had to capitulate because the problem was not in the code but in the theoretical algorithm. So I'll have to change the algorithm partly. The fact is that, as mentioned before, I've followed the algorithm given in the GTCG [2] but I misunderstood it. It may be the fact that it's written in English and so it's a bit harder for me to understand. I also have to say that the triangle-triangle intersection section is not very clear.

Indeed the section is constructed this way : the first part explains with text a method to realize the intersection test (the method is the interval overlap method describe by Möller and Haines) and then in the second part they explains the algorithm step-by-step in a summary way. The problem is that the step-by-step summary is quiet messy and do not made clear reference to what was said before in the first part. This was quite confusing for me. Here is the summary I'm talking about ${ }^{\top}$:
[2) p.542] [...]
An outline of the entire algorithm is as follows:

1. Determine if either \mathcal{T}_{0} or \mathcal{T}_{1} (or both) are degenerate, and handle in application dependent fashion (this may mean exiting the intersection algorithm, or not).
2. Compute the plane equation of \mathcal{T}_{0}.
3. Compute the signed distances $\operatorname{dist}_{V_{1, i}}, i \in\{0,1,2\}$, of the vertices of \mathcal{T}_{1}.
4. Compare the signs of $\operatorname{dist}_{V_{1, i}}, i \in\{0,1,2\}$: if they are all the same, return false; otherwise, proceed to the next step.
5. Compute the plane equation of \mathcal{T}_{1}.

[^1]6. If the plane equations of \mathcal{P}_{0} and \mathcal{P}_{1} are the same (or rather, within \in), then compare the d values to see if the planes are coincident (within \in) :

- If coincident, then project the triangles onto the axis-aligned lane that is most nearly oriented with the triangles' plane, and perform a 2D triangle intersection test. ${ }^{2}$
- Otherwise, the parallel planes are not coincident, so no possible intersection; exit the algorithm.

7. Compare the signs of $\operatorname{dist}_{V_{0, i}}, i \in\{0,1,2\}$: if they are all the same, return false; otherwise, proceed to the next step.
8. Compute intersection line.
9. Compute intervals.

- If no interval overlap, triangles don't intersect. Return false.
- Otherwise, if intersecting line segment is required, compute it. In any case, return true.

First I understood that the part where the intersection test was done was the point 6 and only there. A 2D intersection test using the method of separating axes. This is why I've first done it the way explained above.

Then I realized, reading it again and again trying to understand what was wrong, that the standard intersection test was performed in point 8 and 9 . The point 6 explains how the algorithm have to handle the special case of two triangles being in the same plane (coincident in a math speaking way) by doing a special 2 D intersection test.

Once I realized it I started to change the algorithm partly and code a second version of it. This second version is detailed in the next section.

[^2]

Figure 3.4: Example of a special triangle configuration that causes the algorithm to detect a false positive.

3.2 Second version

Well as explained in the previous section, I misunderstood the Geometric Tools for Computer Graphics book [2] I'm following to realize this triangle intersection tester and so my first version of the algorithm, quiet logically, didn't worked at 100%. Thus I started to modify it to get it working. This section will present the second, corrected, version of the algorithm. I will now use, according to the GTCG [2, p.539], the interval overlap method described by Möller and Haines as the main method to detect intersections. The method used before in the first version of the algorithm is not lost and will be used to compute intersections when the triangles are in the same plane. Indeed the interval overlap method don't handle this special case.

Let's have a overview of the steps involved :
quick rejection test : As the first version, this first step already eliminates with a simple test pair of triangles that cannot intersect. See section 3.1.1 for more details.

Intersection of \mathcal{P}_{0} and \mathcal{P}_{1} resulting in a line \mathcal{L} : The goal is to obtains the line corresponding to the intersection of \mathcal{P}_{0} and \mathcal{P}_{1}. If the planes are parallels there is no intersection and so no line is returned.

If the line exists we use the interval overlap method to check the intersections : Both triangles will now be projected on \mathcal{L}. Prior to the projection the vertices of each triangles needs to be ordered. Each triangle's projection will result in an interval on the line. If the intervals overlap, then the triangles intersect, otherwise, they do not.

Else we use the method of separating axes: If \mathcal{L} doesn't exists this means that the planes are parallels. Thus we are in 2D world and we can use a 2D intersection test to check the intersections. The method is used exactly as in the first version.

I will now present in the next sections the new parts of this second version.

3.2.1 Intersection of \mathcal{P}_{0} and \mathcal{P}_{1} resulting in a line \mathcal{L}

The planes are defined as $\mathcal{P}: \vec{n}, P$ and d, where \vec{n} is a normal vector of the plane, P is a point on the plane and d the distance from plane to origin. The line \mathcal{L} is defined as a point P and a direction \vec{d}.

The direction \vec{d} can be easly computed by doing the cross product of the two plane's normals :

$$
\vec{d}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}
$$

Now we need a point on this line to completely specify it. Assuming that this point will be a linear combination of $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ so :

$$
P=a \overrightarrow{n_{1}}+b \overrightarrow{n_{2}}
$$

We can also say that the point will be on both planes so :

$$
\begin{aligned}
& \overrightarrow{n_{1}} \cdot P=s_{1} \\
& \overrightarrow{n_{2}} \cdot P=s_{2}
\end{aligned}
$$

s_{1} and s_{2} are the distance to origin for both planes.
We substitute and solve for a and b :

$$
\begin{aligned}
& a=\frac{s_{2} \overrightarrow{n_{1}} \cdot \overrightarrow{n_{1}}-s_{1}\left\|\overrightarrow{n_{2}}\right\|^{2}}{\left(\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right)^{2}-\left\|\overrightarrow{n_{1}}\right\|^{2}\left\|\overrightarrow{n_{2}}\right\|^{2}} \\
& b=\frac{s_{1} \overrightarrow{n_{1}} \cdot \overrightarrow{n_{1}}-s_{2}\left\|\overrightarrow{n_{1}}\right\|^{2}}{\left(\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right)^{2}-\left\|\overrightarrow{n_{1}}\right\|^{2}\left\|\overrightarrow{n_{2}}\right\|^{2}}
\end{aligned}
$$

The line \mathcal{L} is now fully defined.

3.2.2 Projection of \mathcal{T}_{0} and \mathcal{T}_{1} on the line \mathcal{L}

Here is used the interval overlap method described by Möller and Haines. The projection of each triangle is done by projecting each of it vertices on the line \mathcal{L} computed in the section 3.2.1

Assuming the following : $V_{0,0}, V_{0,1}$ and $V_{0,2}$ are the vertices of \mathcal{T}_{0}, the projection of each vertex is done as following :

$$
V_{0, i}^{\prime}=\hat{d} \cdot\left(V_{0, i}-P\right), \quad i \in\{0,1,2\}
$$

Note that \vec{d}, which is the direction vector of the line, must be normalized first.

3.2.3 Order the vertices of each triangles prior to the projection on \mathcal{L}

To get the Möller and Haines method working the vertices of each triangle must be ordered in a special way. Indeed the algorithm assumes that in a standard situation vertices V_{0} and V_{1} lie on one side of \mathcal{L}, and the vertex V_{2} on the other side. Moreover the special cases (one point is on the line i.e.) need some attention as well. So to respect theses constraints the vertices needs to be ordered prior to compute the interval. The Figure 3.5 shows all possible placements relative to the line with the particular cases. The working vertex configuration is shown in green for each case. Note that V_{0} and V_{1} can always be swapped. Contrariwise V_{2} has to be placed exactly as shown in every cases.

The vertex configurations for the special cases are absolutely not treated in the book so I had to do a lot of testing to see which configuration works with the algorithm and which don't.

Figure 3.5: All possible placements for a triangle relative to the line.

3.2.4 Compute each triangle interval on \mathcal{L}

Assuming the following : $V_{0,0}, V_{0,1}$ and $V_{0,2}$ are the vertices of \mathcal{T}_{0}, the interval $t_{0,0}$ to $t_{0,1}$ of \mathcal{T}_{0} is compute as following :

$$
t_{0, i}=V_{0, i}^{\prime}+\left(V_{0,2}^{\prime}-V_{0, i}^{\prime}\right) \frac{\operatorname{dist}_{V_{0, i}}}{\operatorname{dist}_{V_{0, i}}-\operatorname{dist}_{V_{0,2}}}, \quad i \in\{0,1\}
$$

The same is done to compute the interval $t_{1,0}$ to $t_{1,1}$ of \mathcal{T}_{1}. Now that we have both interval on \mathcal{L} we simply have to check if they overlap or not. If the answer is yes this means that the triangles intersect otherwise not.

3.3 Test bench of the algorithm

Testing well this algorithm is quite a tricky job. Indeed the only way to approve the rightness of the algorithm is to do a visual check. This means in my case using my eyes to check everything. Moreover the number of possibilities is infinite for two triangles to be placed in a 3D space. This leads to the fact that I simply cannot test everything. So to cover as much problematic possibilities as possible I've decided to split my test bench in 2 parts. A random part and a special cases part.

3.3.1 Random tests

I've proceeded this way to check a maximum number of configurations: In my testing program, I generate a fixed number of triangles (randomly sized) like 10 to 50 (while I can clearly see the intersections with the reference triangle) at random positions around the reference triangle. Then I check if the triangles that the algorithm has marked as intersecting (repaint in a orange color) are indeed visually intersecting. Then the same is done for the triangles marked as not intersecting by the algorithm (grey color). When I've checked everything and it's O.K. I generate a new bunch of random triangles and check again.

When I see a problem, I store the coordinates of the problematic triangle and I change the testing program to generate only the reference triangle and the problematic triangle. Then I try to locate the problem using the debug mode and some visual helpers drawn with OpenGL like a triangle's plane, the projected triangle or the projection on the line, etc.

3.3.2 Special cases

To control more in depth the rightness of my algorithm, I've tested all the special cases mentioned in the Figure 3.5 which shows all the vertex configurations of a triangle relative to the line \mathcal{L}. This is because the projection of the vertices is the critical part of the algorithm. The cases are presented in the figures below using the minimalistic viewer I've developed (see Section 2.3.1 for more details about the viewer). I've done a extra test in which the triangles are in the same plane because in this case the algorithm don't use the standard intersection test (the Möller and Haines one) but the 2D intersection test (using the separating axes method) who has to be tested as well.

Note that all the cases tested are presented below while intersecting but of course I've controlled as well
that, by moving the triangle step-by-step, once the triangles don't visually intersect the algorithm "see" the same as me and repaint the array triangle in grey.

(c) t_{3} case.

(f) t_{6} case.

(i) Both triangles are in the same plane.

Figure 3.6: Special cases tested relative to the configurations presented in the Figure 3.5

Chapter 4

Port the C function to a CUDA function

4.1 Toolkit version used

Currently the last stable version of the CUDA toolkit is the 4.2 . Therefore I'v developed using this version. See appendix A for more details on how to install CUDA.

4.2 Introduction to CUDA

4.2.1 Important keywords

Prior to anything it's important to introduce a bit of vocabulary :
host : The CPU and the system's memory
device : The GPU and its memory
kernel : A function that executes on the device

To write CUDA application we in fact write some standard C code but with some CUDA extensions, here are explained some function qualifiers :
\qquad : To qualify a kernel, a function that executes on the device
\qquad device \qquad : To qualify a function that will be called from a kernel
\qquad : To qualify a function that will be called from a host function

Here is a example of use : \qquad void sum(int a, int b, int *c) \{...\}

4.2.2 Device properties

The CUDA API provide a way to recover all the device properties. Here is a code snippet to demonstrate how to recover for example the name of the device :

```
cudaDeviceProp devProp;
cudaGetDeviceProperties(&devProp, 0);
//...
char name[256] = devProp.name;
//...
```

Also an important aspect for a device is his Compute Capability, it's a term used by NVIDIA to describes the features supported by a CUDA-capable device. The compute capability specific properties can be found on the Wikipedia page of CUDA [5].

4.2.3 General pattern of a CUDA application

Because the device has his own memory and he cannot access the host memory, the data need to be copied from the host memory to the device memory prior to the kernel launch. For the same reason, the resulting data needs then to be copied back to the host. All of this implies of course to allocate the memory on the device before anything. So generally, in all CUDA application the general pattern is always the same :

1. cudamalloc() - We allocate memory on the device for in/out data according to our needs
2. cudaMemcpy (cudaMemcpyHostToDevice) - We copy data from host to device in the space we allocated before
3. kernel<<<blocks,threads>>>() - We launch the kernel
4. cudaDeviceSynchronize() - We wait for the device to finish computation
5. cudaMemcpy (cudaMemcpyDeviceToHost) - We copy the result data back from device to host
6. cudaFree() - We free the memory on the device

You can see that the kernel launch is like a normal function call but with extras brackets. It's here that happens all the magic. The parameters passed using the brackets, the number of blocks and the number of threads, configure the parallel execution that will be executed on the device. The next section will talk a bit more about the kernel.

4.2.4 The kernel

As explained before a kernel is basically a function that executes on the device. Now to understand where is hidden all the massive parallelism power let's have a example.

We have a list of sums to compute, therefore we have 3 arrays of the same size. The first contains the operand a, the second the operand b and the last array the result of each sum as c. The following snippet shows a possible function to realize this using standard C code :

```
void add(int *a, int *b, int *c, int size){
    int i;
    for(i=0;i<size;i++)
        c[i]=a[i]+b[i];
}
```

The CPU will therefore execute each sum one after the other until he have computed everything.

The total theoretical execution time of this function is :

$$
T_{\text {total }}=T_{\text {sum }} * \text { size }
$$

Now here is how the same function looks with CUDA C to take advantage of the massive parallelism power of the GPU :

```
__global__ void add(int *a, int *b, int *c, int size){
    int i = threadIdx.x;
    if(i<size)
        c[i]=a[i]+b[i];
}
void main(void{
    //...
    kernel<<<<1,size>>>(a,b,c,size);
    //...
}
```

Let's review, one after the other, the changes relative to the CPU version. First, the \qquad global \qquad qualifier in front of the function header, this qualifier alerts the compiler that the following function is intended to execute on the device instead of the host.

Then you may have noticed the lack of for loop! It has been replaced by a simple check to ensure that we are not out of bound. Therefore you may ask yourself how can the array be fully computed if no more for loop iterate them.

Well, let's have a look at the kernel launch. As you can see two extras parameters are passed to the function using the brackets, it's respectively the number of blocks and the number of threads to use to execute the function. I will give more details later about the blocks, for now we will stay with something more familiar to every programmer : the threads. So by doing <<<1, size>>> I'm telling to the compiler that I want to launch size numbers of parallel threads on the device to execute my function.

Now the last unexplained line in the code is int $i=$ threadIdx. x; and hopefully this is the glue that links everything. The threadIdx built-in CUDA variable indicates for each thread executing this code his id. Assuming that size= 4 figure 4.1 shows a representation of the 4 threads launched executing the code.

So each thread is responsible for computing one sum of the array.
Now the total theoretical execution time of this function is only the time spent to compute one sum :

$$
T_{\text {total }}=T_{\text {sum }}
$$

Obviously this is a theoretical time and the memory allocation and copy plus other things are not taken in account.

```
__global__ void
add(int *a, int *b, int *c, int size){
    int i = 0;
    if(i<size)
            c[i]=a[i]+b[i];
}
```

(a) Code executed by thread 0

```
__global__ void
add(int *a, int *b, int *c, int size){
    int i = 2;
    if(i<size)
        c[i]=a[i]+b[i];
}
```

(c) Code executed by thread 2
__global__ void
add(int *a, int *b, int *c, int size) \{
int i = 1;
if(i<size)
$c[i]=a[i]+b[i] ;$
\}
(b) Code executed by thread 1
} }

```
```

```
__global__ void
```

```
__global__ void
add(int *a, int *b, int *c, int size){
add(int *a, int *b, int *c, int size){
    int i = 3;
    int i = 3;
    if(i<size)
    if(i<size)
            c[i]=a[i]+b[i];
```

 c[i]=a[i]+b[i];
    ```
(d) Code executed by thread 3

Figure 4.1: Representation of 4 GPU threads executing the code.

\subsection*{4.2.5 Using blocks and threads together}

In the previous section I talked about blocks but without explaining anything, let's see now what blocks are :
\begin{tabular}{|c|c|c|c|c|}
\hline Block 0 & Thread 0 & Thread 1 & Thread 2 & Thread 3 \\
\hline Block 1 & Thread 0 & Thread 1 & Thread 2 & Thread 3 \\
\hline Block 2 & Thread 0 & Thread 1 & Thread 2 & Thread 3 \\
\hline Block 3 & Thread 0 & Thread 1 & Thread 2 & Thread 3 \\
\hline
\end{tabular}

So a block can simply be seen as a collection of threads. It here to simplify the threads management, for the developer as well as for the hardware. However one can ask why can't I simply always use threads? The answer is simple : you can't launch as much threads as you want, each device have a maximum threads per block limitation. For example on the machine I'm currently developing, I have a NVS 4200 M , the limitation is 1024 . Therefore if I want to launch more than 1024 parallel running threads I need to use blocks as well.

Still on my NVS 4200M the max number of blocks I can launch on a 1D grid \({ }^{1}\) is 65535 . Therefore by combining blocks and threads I can launch up to :
\[
\max \text { Blocks } * \operatorname{maxThreads}=65535 * 1024=67^{\prime} 107^{\prime} 840 \text { parallel threads }
\]

Which is now a comfortable number of potentia \({ }^{2}\) parallel computations!

\footnotetext{
\({ }^{1}\) CUDA also allows to index a grid in 2D or 3D depending on the compute capabilities of the device. I only use 1D indexing in my project so I won't explain more about it.
\({ }^{2}\) depending on the compute capabilities of the device
}

\subsection*{4.2.6 Hardware architecture}

Until now, I've presented CUDA from the software point of view, it's time now to go a bit further and see how the blocks, threads and resources are handled from the hardware point of view. Here is a representation of the GPU architecture from http://www.tomshardware.com/:


Thus the GPU is composed of SMs (stream processors) and each SM contains a number of SPs (processors or also called CUDA cores by NVIDIA). The number of SM is dependant of the device hardware and the number of SP per SM is defined by the Compute Capability of the device. Here is the list of corresponding number of SPs relative to the Compute Capability:
\begin{tabular}{|c|c|}
\hline \(\mathbf{C C}\) & SPs \\
\hline \hline 1.0 & 8 \\
1.1 & 8 \\
1.2 & 8 \\
1.3 & 8 \\
2.0 & 32 \\
2.1 & 48 \\
3.0 & 192 \\
\hline
\end{tabular}

When a kernel is launched the corresponding grid of blocks is passed to the GPU. Each SM will then take care of one or more blocks until its maximum capacity, the remaining blocks are queued. A block is completely treated by one and only one SM until it finish. He can then free the slot for one of the remaining blocks waiting. This is done until all blocks of the grid have been treated. One can now
understand that despite an already important parallelization, not all the blocks will run concurrently. This level of parallelization depends on the hardware capabilities of the device, its number of SM and SP.

Inside the SM the block threads will be split into warp. A warp is a set of 32 threads. Each SP will be assigned witha warp to handle concurrently.

An also important thing to know is that each SM as a limited number of 32 -bit registers and shared memory to store the data used by the threads. The threads will need to share all these resources. This can be a limitation to take in account to avoid the kernel launch to fail.

\subsection*{4.3 The ported function}

The first CUDA version of the function simply use the general pattern for CUDA application presented before and uses both blocks and threads to computes in parallel the collisions. Thus each thread will be assigned with a triangle from the array and will compute the collision between this triangle and the reference triangle to finally return the result.

See chapter 6 for detailed performance analysis.

\section*{Chapter 5}

\section*{Optimize the function}

\subsection*{5.1 A proper testing program}

Before going any further I've decided to improve my way of testing the functions because it was becoming too slight. First, I've improved my OpenGL viewer to help me developing and debugging more easily. Here are the new features I've included :
- A help menu listing all the features and the corresponding shortcut
- the reference triangles can be moved around
- The origin axis can be displayed or hidden
- The triangle's coordinates can be displayed
- The triangle's id can be displayed
- A special cases mode as been includes to test directly all special cases configurations at once
- The user can switch between CPU and GPU for the collisions computation
- The number of triangles can be increased or decreased on the fly

Let's have a look at this new version :


And here is the special cases \({ }^{1}\) testing mode:


Then I've also developed a console benchmark to measure performances and being able to compare different optimizations. The benchmark is simple : it generates a number of random triangles, measures the time the GPU use to compute all the collisions with a reference triangle and then do the same for the CPU. Finally the results are printed.

Here is how the console benchmark looks like :

\footnotetext{
\({ }^{1}\) Based on the considerations made in the section 3.3 .2
}


In a sake of simplicity, the console benchmark and the OpenGL viewer has been merged in a single testing program and the user can chose by command line which program to launch and with how much triangles. More details on how to use the test program can be found in appendix C

\subsection*{5.2 Optimize the common algorithm}

You can optimize some code in multiple ways: memory footprint, executable size, speed, exception handling, etc. In my case the only optimization I'm interested in is speed.

To let me appreciate the improvement that one or another modification brings I need to compare the execution time after each of them. The benchmark is done by computing the collisions for 5 M (millions) triangles on a \(\operatorname{Intel}(R) \operatorname{Core}(T M) ~ i 7-2620 M C P U @ 2.70 G H z\) while measuring the execution time between the moment just before calling the function and the moment the program have just returned from the function. The time elapsed is measured using the library <time.h> and the clock_t clock (void); function from it.

The results will be presented this way :
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline
\end{tabular}

The M1-5 are the measures taken, \(A V G\) is the average of the 5 measures, delta gain is the gain between the version just before and the one presented. Finally the total gain is the global gain compared to the reference version v1.0.

The command line used to launch the test program is :
```

1 > test-program.exe --benchmark -t 5000000

```

\subsection*{5.2.1 v 1.0}

This is the first working version of the algorithm. It's already quite efficient because it's based on good techniques thanks to the book [2] I used. However some things can still be optimized, the following sections will present you the optimizations done.

As this is the first version of the algorithm it will be used as reference performance index.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline \hline v 1.0 & 7756 ms & 7718 ms & 7779 ms & 7725 ms & 7757 ms & \(\mathbf{7 7 4 7 . 0} \mathbf{m s}\) & - & - \\
\hline
\end{tabular}

\subsection*{5.2.2 v1.1}

The different algorithm steps were slit into multiple functions. Here a new unique function is doing all the job in a more comprehensive way. The structure of the function is even more based on the steps given in the book [2, p.542].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline \hline v 1.1 & 7701 ms & 7694 ms & 7653 ms & 7732 ms & 7671 ms & \(\mathbf{7 6 9 0 . 2} \mathbf{m s}\) & \(0.74 \%\) & \(\mathbf{0 . 7 4 \%}\) \\
\hline
\end{tabular}

\section*{\(5.2 .3 \quad \mathrm{v} 1.2\)}

The distance between a vertex of a triangle and the plane of the other triangle was computed more than one time in multiple functions while the value was always the same. Those signed distances are now computed only once in the main algorithm function.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline \hline v 1.2 & 7298 ms & 7271 ms & 7246 ms & 7278 ms & 7249 ms & \(\mathbf{7 2 6 8 . 4} \mathbf{m s}\) & \(5.80 \%\) & \(\mathbf{6 . 5 8 \%}\) \\
\hline
\end{tabular}

\subsection*{5.2.4 v1.3}

The side of each vertex of a triangle relative to the plane of the other triangle (found by checking the sign of the distance) is used in multiple places in the algorithm, in the quick reject test and then while ordering the vertex. Sadly it was also computed in both places, now it is computed only once in the main algorithm function.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline \hline v 1.3 & 7084 ms & 7203 ms & 7131 ms & 7101 ms & 7103 ms & \(\mathbf{7 1 2 4 . 4} \mathbf{~ m s}\) & \(2.02 \%\) & \(\mathbf{8 . 7 4 \%}\) \\
\hline
\end{tabular}

\subsection*{5.2.5 v1.4}

The planes of both triangles are needed in multiples places in the algorithm. However they were also computed more than once, so they are now computed only once in the main algorithm function and passed to the functions that need them.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline \hline v 1.4 & 6712 ms & 6847 ms & 6733 ms & 6720 ms & 6729 ms & \(\mathbf{6 7 4 8 . 2} \mathbf{m s}\) & \(5.57 \%\) & \(\mathbf{1 4 . 8 0 \%}\) \\
\hline
\end{tabular}

\subsection*{5.3 Optimize the CUDA part}

To let me appreciate the improvement that one or another modification brings I need to compare the execution time after each of them. The benchmark is done by computing the collisions for 20 M (millions) triangles while measuring the execution time between the moment just before calling the function and
the moment the program have just returned from the function. The time elapsed is measured using the library <time.h> and the clock_t clock (void); function from it.

For the CUDA optimizations the machine used to test and compare the optimizations differ from the previous section :
- Intel i7-2600K @ 3.4 GHz (4 cores)
- 8.00 RAM
- \(2 x 590\) GTX (bi-GPU)

On this machine, with the first working CUDA version based on the v1.4 of the common algorithm and without any optimizations on the CUDA side the performances are already quite impressive \(\left[^{2}\right.\) :
\begin{tabular}{|c|c|c|}
\hline & \(M\) & gain \\
\hline \hline CPU & 8959 ms & - \\
\hline GPU & 2462 ms & \(\mathbf{2 6 4 \%}\) \\
\hline
\end{tabular}

See chapter 6 for detailed and complete performance analysis.

\subsection*{5.3.1 Split kernel launches}

This is not really a performance optimization but it's a trick I'm using to avoid a Windows security system. This security system is part of the Windows Display Driver Model and is called Timeout Detection and Recovery. It's a protection to avoid frozen display in case of a GPU problem. It triggers if the OS have no response of the GPU driver for 2 seconds. This is a good functionality for normal use, but because a kernel occupies the device at \(100 \%\) the TDR triggers and resets the GPU driver and therefore kills the running kernels to recover the graphic card if it's running for more than 2 seconds. It's quiet annoying because this limits a lot the interest of GPU computing.

The best solution is to deactivate this timeout when computing kernel with the GPU. To see how to do this see appendix A.4.

However because not every one can maybe do it (no administrator rights, etc.) I've decided to find a seamless solution using code. The idea is to split the unique kernel call that takes more than 2 seconds into multiples sequential kernel calls that take less than 2 seconds each. But because kernel calls are asynchronous, a cudaDeviceSynchronize() ; must be placed after each kernel call to wait the end of the kernel execution and therefore to ensure that the GPU driver as a little time between calls to response again to the OS to avoid the protection to trigger.

Because the time a kernel takes to execute depends on the speed of the GPU, a kernel may be split into too many calls if I don't adapt it to the speed of the device. To do that I've based myself on the number of CUDA cores of the device (which can be found in the devices properties, see section 4.2 .2 for more details) to theoretically evaluate the capabilities of the device. This allows me to always split the kernel call into smaller ones that takes always just under 2 seconds each.

\footnotetext{
\({ }^{2}\) Especially as the CPU of this machine is already very quick
}

Using split kernels will also helps us to avoid the maximum blocks limitation of 65535 which can be reached. Indeed with 128 threads per blocks for example we can compute \(128 * 65535=8.4 \mathrm{M}\) triangles only.

The performance are the same using split kernel calls or unique kernel call which is a good thing. This is due to the fact that, in reality on the hardware, the blocks (if a lot) will not all execute concurrently on the device but only some. It depends on the hardware capabilities of the device. Thus the other ones are queued waiting for being treated. So, when using split kernel call, we will simply do as the hardware do, but using code.

\subsection*{5.3.2 Maximize hardware utilization}

Unlike the title may indicates, this is not really an optimization. It's more a wish of adapting the kernel launch to run as well as possible no matter which device it is on. For that, the hardware specifications of the device must be taken into account.

In the section 4.2.6 covering the hardware architecture a part is explaining the fact that each thread have a limited number of registers to store his data. Because each thread will fully execute the kernel code, each variable declaration in it will use some registers. For example declaring a 32-bit integer somewhere in the code will use one of the 32 -bit register, and so on. As the threads are running concurrently they will need some registers at the same time.

To be more precise each stream processor, unit that will handle a block of threads, have a number of registers available to share between all the threads running. Therefore more the kernel uses registers less the number of threads launched per block could be high. Precisely in my case this limitation causes my kernel launch to fail on some devices. Let's see why :

I launch a kernel with 1024 threads per block on a NVS 4200 which is Compute Capability 2.1 to compute the triangle-triangle collisions. The compiler option : --ptxas-options=-v allows me to find the number of registers used by my kernel. In my case the algorithm uses 48 registers. So each thread will need 48 registers to run correctly. The NVS 4200 has, according to it Compute Capability 2.1, 32K of registers per stream processor. So the 32 K (32768) of registers will be shared between the threads.
\[
(32768 / 1024=32)<48 ?
\]

The answer is clearly no. I don't have enough registers available per thread. I have to either lower the number of registers or to lower the number of threads launched. Because I can't use less registers that I'm already doing, I will need to lower the number of threads per block. In my case the maximum number of threads per block is :
\[
32768 / 48=682
\]

Therefore if I launch blocks of 682 threads each, my kernel will now work. However this configuration may not be optimal depending on the device, so let's go a bit further.

To allows developer to maximize the performances of their CUDA applications, NVIDIA have provided a tool to find the best launch configuration for each particular kernel and depending on the hardware. This tool is called Occupancy Calculator and it can be found in the CUDA toolkit under tools/ or on their website. Here is how it looks like :


The most interesting plot of this tool is the one called Impact of Varying Block Size which allows to see, for our specific kernel usage values, the best threads per block launch configuration. On the x-axis the number of threads per block is represented while on the \(y\)-axis the multiprocessor occupancy is shown. The higher the occupancy is, better it is. The screenshot above shows the plot for my kernel with my NVS 4200. As you can see the occupancy at the limit of 682 threads calculated before is good. So I could launch the kernel with this much threads.

However for an older CUDA-capable device, a 8800 GT , the conclusion is not the same :


The device have 8192 registers per multiprocessor so the maximum number of threads per block is :
\[
8192 / 48=170
\]

If I want to launch the kernel with this value as I've done before the occupancy would be very low this time!

The solution I've chosen after having tested a variety of configuration is to use the power of two just smaller than the limit calculated. So for the NVS 4200 it would be 512 threads per block and for the 8800GT it would be 128 threads per block. I found this solution very good because it optimizes well the GPU occupancy for any kind of devices.

\subsection*{5.3.3 Use of host pinned memory - not applicable}

When dynamically allocating data on the host, the use of malloc() is quite standard. When developing CUDA applications it can be interesting to use CUDA version of the malloc(), cudaHostAlloc (). Multiple types of memory can be allocated using this function but the default behaviour is to allocate pinned memory, memory that cannot be swapped to the hard-drive. Being sure that the memory allocated this way will never be swapped out, the CUDA driver tracks the memory addresses used and therefore the device can directly access this memory to read and write faster than it would with standard malloc() memory.

The use of cudaHostAlloc() is necessary to use streams (see next section) and also for the zero-copy feature that allows to avoid the data copies from host to device and backward. The device directly access to the host memory. It's more efficient on devices which share the host memory with the CPU like integrated graphic cards.

However in my case all of theses features can't be used because I don't know how the host memory has been allocated when my function is called. It is certainly static memory allocation, or malloc allocation but certainly not a memory space allocated with cudaHostAlloc() as I need it.

\subsection*{5.3.4 Staged concurrent copy and execute with streams - not applicable}

This could be a very efficient way to reduce the global execution time of an algorithm running on the GPU. The book I read on CUDA reported in his example a \(21 \%\) improvement over the original version. 4, p.210]

The principle is to create and launch on the device multiple streams of operations like memcpy, kernel execution, etc. that will execute serially within a stream but simultaneous between the streams. Thus every operation (even memcpy) are launched asynchronously at the beginning and then the device will try, if it is capable, to run a memcpy of a stream at the same time as a kernel execution in another stream.

So one understand that it's a useful feature if the memcpy takes a considerable time to execute relative to the kernel execution. Sadly this is not my case, indeed I've run my program with different number of triangles \(0.1 \mathrm{M}, 1 \mathrm{M}, 10 \mathrm{M}\), etc. and all memcpy operations take always less than \(1 \%\) time of the kernel execution time.

Therefore I've decided not to implement streams in my function as it would be a waste of time compared to the improvement I may have.

\subsection*{5.3.5 Multi-GPU}

CUDA allows the developer to use more than one graphic card if available. Prior to the version 4 of CUDA this was a bit restrictive because a host CPU thread was required for each graphic device. I agree, first this seams a good thing because each device management is well separated and the management code is cleaner. However this means more complex code because of the threads creation and also a heavier code to execute, it's quiet long to create a host thread. From the version 4.0 and ahead a single host thread can handle more than one graphic device. This is what I've chosen in my case because I prefer fast code as clean code.

The general pattern to manage multiple devices is the following :
```

int device_count;
cudaGetDeviceCount(\&device_count);
//...
int i;
for(i=0;i<device_count;i++) {
cudaSetDevice(i);
//Specific operations on selected device (memcopy, kernel launch, etc.)
}

```

However doing it exactly like this will not takes advantage of the multiple devices. Indeed let's assume the operations are the following (in that order) :
1. memory allocation on the device
2. copy data from host to device
3. launch the kernel
4. copy result back from device to host
5. free memory

This leads us to the following code :
```

int device_count;
cudaGetDeviceCount(\&device_count);
//...
int i;
for(i=0;i<device_count;i++) {
cudaSetDevice(i);
cudaMalloc();
cudaMemcpy(cudaMemcpyHostToDevice);
kernel<<<blocks,threads>>>();
cudaDeviceSynchronize();
cudaMemcpy(cudaMemcpyDeviceToHost);
}

```

So as you can see in the code snippet above the for loop will run through each CUDA-capable device thanks to the call to cudaSetDevice() at the beginning of each iteration. This call will define the active
device for the following cudaxxx() calls. Therefore the first iteration of this loop will execute the 5 operations enumerated before for the device 0 , then again for the device 1 , and so on.

But if we have 4 CUDA-capable devices and we want to take advantage of the multi-GPU capabilities we need to have the 4 kernels running in parallel. The solution with only one host thread that execute the code sequentially is to do only asynchronous calls. And here is the problem, in the five operations enumerated before only the kernel launch is asynchronous. However, because of other synchronous calls (memory allocation, copy, etc.), the kernel launches will be delayed one from each other.

To avoid this, the solution I chosen is to use the following pattern :
```

int device_count;
cudaGetDeviceCount(\&device_count);
//...
int i;
for(i=0;i<device_count;i++) {
cudaSetDevice(i);
cudaMalloc();
cudaMemcpy(cudaMemcpyHostToDevice);
}
for(i=0;i<device_count;i++) {
cudaSetDevice(i);
kernel<<<<blocks,threads>>>();
}
for(i=0;i<device_count;i++) {
cudaSetDevice(i);
cudaDeviceSynchronize();
cudaMemcpy(cudaMemcpyDeviceToHost);
}

```

As the kernel execution is clearly the most time consuming operation in my case, this solution is almost optimal. Indeed the synchronous memory allocation and data copy are quickly executed on each devices. Then the second for loop allows to asynchronously launch all the kernels, they will therefore execute in parallel. Finally the last for loop will synchronize each device with the host and then copy the result back.
\begin{tabular}{|c|c|c|c|}
\hline & \(M\) & gain from single GPU & gain from single \(C P U\) \\
\hline \hline GPU (4x) & 1163 ms & \(111 \%\) & \(\mathbf{6 7 0 \%}\) \\
\hline
\end{tabular}

See chapter 6 for detailed and complete performance analysis.

\subsection*{5.3.6 Debug to Release}

When time came for me to prepare my code for release I had a very good surprise : the equivalent execution times were a lot lower then I expected In single GPU computation I have a stratospheric gain of \(289 \%\) so quite 4 times faster! Here is an outlinf \({ }^{3}\) :

\footnotetext{
\({ }^{3}\) Strangely in Release the multi-GPU version become useless as the single-GPU version is even quicker for all the values tested. It's however strongly dependant on the hardware and maybe on an other configuration the multi-GPU version could be interesting.
}
\begin{tabular}{|c|c|c|c|c|}
\hline & \(M\) & gain from GPU (1x) & gain fromGPU (4x) & gain from single CPU \\
\hline \hline GPU (1x) release & 633 ms & \(289 \%\) & \(84 \%\) & \(\mathbf{1 3 1 5 \%}\) \\
GPU (4x) release & 701 ms & \(251 \%\) & \(66 \%\) & \(\mathbf{1 1 7 8 \%}\) \\
\hline
\end{tabular}

I have been surprised to see so much speed differences between Debug and Release compiled version so I've tried to inform myself to find what was making the Debug version so slow.

Honestly it was hard to find a lot of informations but I was able to highlight two possible reasons :
- Some stack checks can be performed in Debug mode which can slow down the execution time a lot
- The code execution on the GPU in Debug mode is in some way synchronized with the host to simplify the debugging so it became slower

\section*{Chapter 6}

\section*{Performance analysis}

\subsection*{6.1 Algorithm optimizations}

This is performance outline of the optimizations done to the common algrotihm in the section 5.2

The benchmark is done by computing the collisions for 5 M (millions) triangles on a Intel ( \(R\) ) Core(TM) i7-2620M CPU @ 2.70GHz while measuring the execution time between the moment just before calling the function and the moment the program have just returned from the function. The time elapsed is measured using the library <time.h> and the clock_t clock ( void) ; function from it.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline version & M1 & M2 & M3 & M4 & M5 & AVG & delta gain & total gain \\
\hline \hline v 1.0 & 7756 ms & 7718 ms & 7779 ms & 7725 ms & 7757 ms & \(\mathbf{7 7 4 7 . 0} \mathbf{~ m s}\) & - & - \\
v 1.1 & 7701 ms & 7694 ms & 7653 ms & 7732 ms & 7671 ms & \(\mathbf{7 6 9 0 . 2} \mathbf{~ m s}\) & \(0.74 \%\) & \(\mathbf{0 . 7 4 \%}\) \\
v 1.2 & 7298 ms & 7271 ms & 7246 ms & 7278 ms & 7249 ms & \(\mathbf{7 2 6 8 . 4} \mathbf{~ m s}\) & \(5.80 \%\) & \(\mathbf{6 . 5 8 \%}\) \\
v 1.3 & 7084 ms & 7203 ms & 7131 ms & 7101 ms & 7103 ms & \(\mathbf{7 1 2 4 . 4} \mathbf{m s}\) & \(2.02 \%\) & \(\mathbf{8 . 7 4 \%}\) \\
v 1.4 & 6712 ms & 6847 ms & 6733 ms & 6720 ms & 6729 ms & \(\mathbf{6 7 4 8 . 2} \mathbf{m s}\) & \(5.57 \%\) & \(\mathbf{1 4 . 8 0 \%}\) \\
\hline
\end{tabular}

\subsection*{6.2 CUDA optimizations}

This is performance outline of the CUDA optimizations done in the section 5.3

To let me appreciate the improvement that one or another modification brings I need to compare the execution time after each of them. The benchmark is done by computing the collisions for 20 M (millions) triangles while measuring the execution time between the moment just before calling the function and the moment the program have just returned from the function. The time elapsed is measured using the library <time.h> and the clock_t clock ( void ) ; function from it.

For the CUDA optimizations the machine used to test and compare the optimizations was this:
- Intel i7-2600K @ 3.4GHz (4 cores)
- 8.00 RAM
- \(2 x\) GTX 590 (bi-GPU)
\begin{tabular}{|c|c|c|c|}
\hline & \(M\) & diff gain from previous & total gain \\
\hline \hline 1x CPU & 8959 ms & - & - \\
1x GPU & 2462 ms & \(264 \%\) & \(\mathbf{2 6 4 \%}\) \\
4x GPU & 1163 ms & \(111 \%\) & \(\mathbf{6 7 0 \%}\) \\
1x GPU release & 633 ms & \(84 \%\) & \(\mathbf{1 3 1 5 \%}\) \\
4x GPU release & 701 ms & \(-10 \%\) & \(\mathbf{1 1 7 8 \%}\) \\
\hline
\end{tabular}

As mentioned in the section 5.3 .6 the multi-GPU in release version is a bit slower than the single-GPU release. I can't understand well why but I imagine that, while single-GPU performances have increased so much, the kernel computation become not enough heavy so the extra execution time due to the multi-device management become too much weighty compared to the multi-GPU benefits. So the total gain from single-CPU to single-GPU for 20 M triangles computation is a whopping \(1315 \%\) of speed gain, therefore is more then 14 times quicker! The gap even increases with more triangles, the maximal gain reaches \(1432 \%\) (so more than 15 times quicker) when computing 35 M between release version of the single-CPU and the single-GPU.

\subsection*{6.3 Overview on a high-end machine}

The measures have been taken on the following machine :
- Intel i7-2600K @ 3.4 GHz (4 cores)
- 8.00 RAM
- \(2 x\) GTX 590 (bi-GPU)


This semilogx plot let's well appreciate the astonishing performance of GPU computation. Until 1M triangles the performances are quiet the same (even a little disadvantage for the GPUs) but from there, while the time spent by the CPU is flighting away, all GPU versions keep a very acceptable time to compute the quickly increasing number of triangles. Notice the great speed improvement of the Release version of the code. The plot also clearly indicates that for bigger numbers then 35 M the gap between the CPU and the GPU would still grow. This is easily explained by the fact that the CPU evolution will be linear because it is computing the collision sequentially while an added triangle collision to compute for the GPU will simply be executed in parallel with the other ones so no extra time is spent. Practically, even if very high, the number of parallel running threads on the GPU is though limited 1

It may be interesting to zoom on the left of the previous plot just to see how it is for low triangle count. As you can see for 10 ' 000 triangles the results are clearly disadvantaging the GPU version : 45 ms for the CPU, 258 ms for the single-GPU version and 419 ms for the multi-GPU version. This clearly indicates that, although the GPU versions are a lot quicker for heavier tasks, it's very time consuming to prepare the computation on the GPU (memory allocation, data copy, etc.) and so the CPU is quicker if we want to compute a few collisions (under 1M).

\footnotetext{
\({ }^{1}\) see section 4.2 .6 for more details on the hardware architecture.
}


This last chart let's appreciate the results under a different light:


\subsection*{6.4 Overview on a 5 years old machine}

Now let's see how it looks on a 5 years old machine with one of the first CUDA-capable device.

The measures have been taken on the following machine :
- Intel Core2Duo E6850 @ 3.00GHz
- 4.00 RAM
- GeForce 8800 GT

The following plot and chart are voluntary plotted with the same view and ranges to help the comparison with the previous ones.


The results are here logically under the high-end computer speed but still the GPU gives very good results especially in the release version. The gap between the Debug and the Release version is here even bigger then in the previous section. In all cases this means that the function may take advantage of the GPU over the CPU (if same age) no matter which CUDA-capable device it is.

Note that the plot stop at 10M triangles only because this GPU as too few memory to handle more than that.

Like in the previous section here is the corresponding chart :


The maximal gain here in release of the GPU version is \(860 \%\) (so quite 10 times quicker). Note that compared to the high-end machine with his huge GTX 590, this 8800GT isn't doing much slower in release version. For 10M triangles the GTX 590 is only \(60 \%\) quicker so this quite old card is still doing well.

\section*{Chapter 7}

\section*{Conclusion}

\subsection*{7.1 Problems encountered}

\subsection*{7.1.1 CUDA tools have no linker}

A known limitation of the current stable CUDA toolkit version 4.2 is the lack of linker, this leads to the fact that it's not possible to split the functions used by the kernel into multiples files. All the functions must be in the same file and qualified with __device_1 for CUDA compiler agrees to use them in the kernel. I was annoyed by this because I wanted to use the same geometric functions I've developed as well as the same intersection test algorithm for both CPU and GPU functions.

The workaround I've found is done in two steps : First to qualify the functions with both \(\qquad\) and
\(\qquad\) __device_ \(\qquad\) to indicates the CUDA compiler that theses functions are designed to run on the host as well as on the device. Secondly to include the source file *.cu containing all the geometric functions directly into the file that contains the kernel, this way the CUDA compiler have all the needed function at the same place. This way the host function can also use the tools and they still are in a separate file for better comprehension. Note that the file included must not be compiled because he already is through the inclusion.

\subsection*{7.1.2 NVIDIA Developer Zone down}

Another inconvenience is that from about July the 4 or 5 all the NVIDIA Developer Zone as been closed due to attacks on the site. Here is the current message displayed when trying to access the Developer Zone :

\footnotetext{
\({ }^{1}\) This is a protection to prevent the possibility of calling any standard host library function on the device.
}

\section*{Posted July 23}

We have added more download links at the bottom of this page. We appreciate your patience as we restore the Developer Zone website.

Posted July 13, 2012
A small proportion of users' hashed passwords for DevZone has been posted publicly.
We continue to strongly recommend that you change any identical passwords that you may be using elsewhere, as noted below.

Posted July 12, 2012
NVIDIA suspended operations today of the NVIDIA Developer Zone (developer.nvidia.com). We did this in response to attacks on the site by unauthorized third parties who may have gained access to hashed passwords.

We are investigating this matter and working around the clock to ensure that secure operations can be restored.
As a precautionary measure, we strongly recommend that you change any identical passwords that you may be using elsewhere.

NVIDIA does not request sensitive information by email. Do not provide personal, financial or sensitive information (including new passwords) in response to any email purporting to be sent by an NVIDIA employee or representative.

We will post updates about this matter here. For any questions, email us at devzoneupdate@nvidia.com.
For technical support, go to www.nvidia.com/support.
While we work to restore the full Developer Zone website, a few of the most popular pages and downloads are available now.

This problem as been very painful for me because all forum topics are inaccessible and this was my main information source when I was encountering problems. Therefore some times I've passed more time to solve a problem just because the Developer Zone was inaccessible. The site was still down on July the 24.

\subsection*{7.1.3 Float rounding differences between CPU and GPU}

I've encountered a quiet strange problem with floating point numbers that I was not able to solve. Indeed in my console benchmark program I've tried to compared the results computed by both CPU and GPU for the same triangle and this for to whole array to check if the results were always the same as it should. Unfortunately, I discovered that it was not always the case. Indeed for a bunch of 1000 triangles I have in average one mismatching result. By displaying each problematic triangle found I've discovered that it always concern triangles who are close to touching or closely touch the reference triangle. It's clearly indicates a rounding problem. This may be caused by differences between floating precision of the CPU and the GPU. With this idea in mind I checked that both would be working on single-precision floats but despite the effort the problem remains. However good CUDA is IEEE 754 compliant for floating operations.

Trying to find more informations about it I found a document written by NVIDIA about this subject. (3) Here is extract of it:

When porting numeric code from the CPU to the GPU of course it makes sense to use the
x86 CPU results as a reference. But differences between the CPU result and GPU result must be interpreted carefully. Differences are not automatically evidence that the result computed by the GPU is wrong or that there is a problem on the GPU.

More in details they explains also the following thing :

As we have explained, there are many reasons why the same sequence of operations may not be performed on the CPU and GPU. The GPU has fused multiply-add while the CPU does not. Parallelizing algorithms may rearrange operations, yielding different numeric results.

I conclude that it may not be a solvable problem and above all that it may not be so dramatic. Indeed the problematic triangles are the ones who are already at the limit, so finally it doesn't matter if they are considered as intersecting or not because both results may be right as they are so closed.

\subsection*{7.2 Possible improvements}

\subsection*{7.2.1 Multi-core CPU version}

The CPU version of the function is now only a single-core version. So when comparing the result with a multi-GPU version of the CUDA function this is not fully "comparable" even if it's still informative. Idealy a multi-core CPU version could have been interesting.

\subsection*{7.2.2 WDDM TDR workaround also available for multi-GPU}

For now the workaround that allows to avoid the WDDM TDR protection to trigger is only available in single-GPU version (see section 5.3.1). This is because after each launch of a split kernel a cudaDeviceSynchronize() is placed. Because currently a single host is launching all the kernels on the devices, the calls needs to be asynchronous to take advantage of the multiple devices. This would not be the case if a cudaDeviceSynchronize() is placed between each launch.

Therefore the only solution to avoid this problem is to have one host thread per device to manage. Thus the split kernels workaround could be used even in multi-GPU execution of the CUDA function.

\subsection*{7.2.3 OpenCL}

It has been discussed with Pixelux Entertainement to try to port also the algorithm to another technology then CUDA if I had enough time. Sadly it was not the case but I though inform myself a bit on OpenCL. OpenCL is a open standard to develop application that take advantage of parallel hardware. It like CUDA do, but not only with NVIDIA GPU devices, but also with AMD/ATI hardware and so on.

For what I've seen the performances between the same CUDA code running in OpenCL are quite the same. Moreover porting CUDA code to OpenCL code is not so much work because OpenCL is itself based on CUDA. Tools even exist (for what I've seen only for linux at the moment) to port it automatically. I've however not tested it.

Thus this could be an interesting improvement of this function.

\subsection*{7.3 Last words}

When I launched myself in this thesis I had no idea if the results would be interesting and even if the whole function could works on the GPU, therefore I'm very satisfied with the results! The algorithm is robust and reliable and the CUDA function achieves great performances compared to the CPU version. The best performance ratio achieved is more then 15 times quicker for the GPU between a \(i^{7} @ 3.4 G H z\) and a GTX 590 with release code. An also good aspect is that the performances are still very interesting even on an older machine : a ratio of 10 times quicker for the GPU is achieved between a Core2Duo E6850@3.00GHz and a GeForce \(8800 G T\) with release code. Finally this project has been very informative and interesting to realize. One of it great aspect is that it's so simply defined while involving many different aspects and being very complete and expansible.

\section*{Bibliography}
[1] Pixelux Entertainement. About. http://www.pixelux.com/company.html, 2012.
[2] Philip J.Schneider and David H.Eberly. Geometric Tools for Computer Graphics. Morgan Kaufmann Publishers, 2003.
[3] NVIDIA. Floating point and ieee 754 compliance for nvidia gpus. http://developer. download. nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf.
[4] Jason Sanders and Edward Kandrot. CUDA By example. Edwards Brothers, 2011.
[5] Wikipedia. Cuda - wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index. php?title=CUDA\&oldid=500305004, 2012. [Online; accessed 21-July-2012].
[6] Wikipedia. Gpgpu - wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index. php?title=GPGPU\&oldid=502022507, 2012. [Online; accessed 24-July-2012].

\section*{Appendix A}

\section*{Installing CUDA}

\section*{A. 1 Do you have a CUDA-capable device?}

NVIDIA graphic cards built since 2006 and the GeForce 8800GTX are CUDA-capable, for the full list see the Wikipedia page [5].

\section*{A. 2 To use CUDA application}

If the NVIDIA graphic card is CUDA-capable, then it's sufficient to install the lastest available official driver from NVIDIA website, the CUDA driver is included in it. However just in case it can be downloaded separately at http://www.nvidia.com/content/cuda/cuda-downloads.html

\section*{A. 3 To develop CUDA applications}

\section*{A.3.1 Minimum}

By going to this url : http://www.nvidia.com/content/cuda/cuda-downloads.html again one can download and install the CUDA toolkit which contains the compiler nvcc, libraries, headers, etc. Optionally the CUDA SDK can be downloaded and installed as well, it contains a lot of useful code examples.

Then, because a CUDA application runs on both CPU and GPU, a standard host C compiler is needed as well. When we want to compile a application that contains CUDA C code, nvcc will obviously handle on his own the device CUDA C code but he will then feed the standard C compiler with the regular C host code.

\section*{A.3.2 With a IDE integration}

NVIDIA provide also a integration of CUDA tools with Microsoft Visual Studio and Eclipse (at the moment for Linux only) as well. It's called NSight and can be downloaded by following this url :

\section*{A. 4 How to deactivate Windows GPU driver timeout}

If the screen blink during kernel computation and a message is displayed by Windows to indicates that the video driver wasn't responding and has been reset, this means the WDDM TDR has trigger. See section 5.3.1 for more details about this protection.

Here is two ways to deactivate this protection :

NSight installed This is the easier way
1. Open NSight Monitor application
2. Go to the options - General tab
3. Under Windows Display Driver set false for WDDM TDR enabled

NSight not intalled It's a Windows registry modification
1. Windows key \(+R\) to open the execute windows
2. Type regedit
3. Go to HKLM \(\backslash\) SYSTEM \(\backslash\) CurrentControlSet \(\backslash\) Control \(\backslash\) GraphicsDrivers \(\backslash\)
4. Add a new key DWORD named "TdrLevel" with value 0 or modify existing one

\section*{Appendix B}

\section*{How to use the functions}

Both CPU and GPU version of the function are provided to compute the collisions. Here are the steps needed to use them in an existing program :
1. Add the sources files to the project or link the already compiled library provided
2. Include the detect-tri2tris-intersection.h to gain access to the functions
3. Configure the functions launches using the void config_set (uint8_t config) ; function (optional, see below)
4. Call the functions to compute the collisions, both the CPU or the GPU version (if the machine have a CUDA-capable device) can be used.

By default the functions will stop once the first collision is detected and the CUDA function will use the workaround to avoid the WDDM TDR to trigger. However the following flags can be set :

COMPUTE_ALL_INTERSECTION Force the two intersect fct to compute intersections for the whole array even if an intersection as already been detected

VERBOSE_MODE The functions will printf some text when error occurs
NO__WDDM_TDR_WORKAROUND By default the function avoid the Microsoft TDR to trigger that kill the cuda kernel if it's running for more then 2 sec by using a workaround. This flag force the function to not use the workaround. Note that the workaround only working for a single GPU computation.

FORCE_SINGLE_GPU_COMPUTATION Allow to force the use of a single device to compute the intersections even if there is more then one CUDA-capable device, the first device will be used

Finally here is a example to demonstrate how to use the configuration function :
```

1 config_set(COMPUTE_ALL_INTERSECTION | VERBOSE_MODE);

```

\section*{Appendix C}

\section*{How to use the test program}

The test program is composed of two smaller programs : a OpenGL viewer and a console benchmark. The user can select, using the command line, which program to launch and with how much triangles. The command line options are the following :
-h or -help to shows help.
-t or -triangles to specify the number of triangles. (default value is 10 triangles)
-b or -benchmark to run benchmark mode to compare CPU and GPU algorithm.

Here is a example of command line :
```

> test-program.exe --benchmark -t 5000000

```

If launched without any options the test program will launch the viewer with 10 triangles.
The viewer on his side shows the reference triangle in blue and the other triangles in gray. When a collision is detected between the reference triangle and one of the triangles in array this last is painted in orange. The viewer have the following shortcut :
h Show help
arrows Zoom/Rotate around
wasdqe Move the blue triangle
o Show origin axis
c Show triangle coord
i Show triangle id
t Switch to special cases mode
g Switch between CPU and GPU
+ Add a triangle
- Remove a triangle
space bar New random triangles

\section*{Appendix D}

\section*{Listing}

\section*{D. 1 Triangle-triangle intersection test algorithm}
geometric-types.h
```

/**

* \file geometric-types.h
* lauthor Romain Maffina
* Iversion 1.0
* \brief Types definitions for geometric tools.
*/
\#ifndef GEOMETRIC_TYPES_H_
\#define GEOMETRIC_TYPES_H_
1 0
\#include <stdint.h>
12
13 /**
* @struct coord_t
* @brief Represent a point/vertex in a 3D space system.
typedef struct{
float x,y,z;
} coord_t;
/**
* @struct vector_t
* @brief Represent a vector in a 3D space system.
*/
typedef struct{
float x,y,z;
vector_t;
/**
* @struct triangle_t
* @brief Represent a triangle with 3 coordinates.
typedef struct{
coord_t p1,p2,p3;
} triangle_t;

```
```

36
37 /**

* @struct line_t
* @brief Represent a line defined by a point and a direction.
*/
typedef struct{
vector_t direction;
coord_t p;
} line_t;
/**
 * @struct plane_t
 * @brief Represent a plane defined by a point, a normal and the distance to zero.
*/
typedef struct{
//!a point on the plane
coord_t p;
//!non-normalized
vector_t normal;
//!distance to zero coord
float d;
} plane_t;
\#endif

```

\section*{geometric-tools.h}
```

/**
* \file geometric-tools.h
* lauthor Romain Maffina
* \version 1.0
* \brief Toolbox with geometric tools.
*/
\#ifndef GEOMETRIC_TOOLS_H_
\#define GEOMETRIC_TOOLS_H_
\#include <math.h>
\#include "geometric-types.h"
//!Dot product between two point/vector
\#define dot(u,v) ((u).x * (v).x + (u).y * (v).y + (u).z * (v).z)
//! Norm of a vector
\#define norm(v) sqrtf(dot(v,v))
//! Normalize a vector
\#define normalize(r,v) (r).x = (v).x/norm(v);\
(r).y = (v).y/norm(v);
(r).z = (v).z/norm(v);
//! Add a point/vector with another point/vector
\#define add3d(r,a,b) (r).x = (a).x+(b).x;\
(r)\cdoty = (a).y+(b)\cdoty;\
(r).z = (a).z+(b).z;
//! Substract a point/vector with another point/vector
\#define sub3d(r,a,b) (r).x = (a).x-(b).x;\
(r)\cdoty = (a).y-(b).y;\
(r).z = (a).z-(b).z;
\#ifdef __cplusplus
extern "C"{

```
```

\#endif
void triangle_from_triangle(triangle_t r, triangle_t *t);
void triangle_from_coords(coord_t p1, coord_t p2, coord_t p3, triangle_t *t);
void triangle_from_value(float p1x, float ply, float p1z,
float p2x, float p2y, float p2z,
float p3x, float p3y, float p3z,
triangle_t *t);
vector_t vector_by_scalar(vector_t v, float c);
vector_t vector_from_points(coord_t m, coord_t n, vector_t *mn);
vector_t cross(vector_t a, vector_t b, vector_t *result);
float point_to_plane_dist(coord_t p, plane_t pl);
plane_t triangle_to_plane(triangle_t t, plane_t *pl);
triangle_t triangle_proj_on_plane(triangle_t tri, plane_t pl, triangle_t *proj);
coord_t point_proj_on_line(coord_t p, line_t l, coord_t *p_bis);
void triangle_proj_on_line(triangle_t t, vector_t d, float *min, float *max);
uint8_t intersection_test_2d(triangle_t t0, triangle_t t1, plane_t pl);
uint8_t intervals_overlap(triangle_t T0, triangle_t T1, plane_t P0, plane_t P1, line_t L,
float dist_T0[], float dist_T1[], uint8_t signs_T0[], uint8_t signs_T1[]);
uint8_t planes_intersection(plane_t p1, plane_t p2, line_t *line);
void triangle_line_intersection_interval(triangle_t t, float dist[], uint8_t signs[],
line_t l, coord_t *t0, coord_t *t1);
void order_points(coord_t p[], float dist[], uint8_t sides[]);
\#ifdef __cplusplus
}
\#endif
60 \#endif /* GEOMETRIC_TOOLS_H_ */

```
34
59

\section*{geometric-tools.cu}

1
/**
* \file geometric-tools.cu
* lauthor Romain Maffina
* Iversion 1.0
* Ubrief Toolbox with geometric tools.
*/
\#include <stdio.h>
\#include <math.h>
\#include "geometric-tools.h"
\(/ /\) const coord_t zero_p \(=\{0,0,0\}\);
\(/ /\) const vector_t zero_v \(=\{0,0,0\}\);
/**
* @brief Create a triangle from another triangle.
* @param r the triangle to copy
* @param *t the resulting triangle
*/
__host__ __device__ void triangle_from_triangle(triangle_t r, triangle_t *t) \{
\(t->p 1 . x=r . p 1 . x ; t->p 1 . y=r . p 1 . y ; ~ t->p 1 . z=r . p 1 . z ;\)
\(t->p 2 . x=r . p 2 . x ; t->p 2 . y=r . p 2 . y ; t->p 2 . z=r . p 2 . z ;\)
```

 t->p3.x=r.p3.x; t->p3.y=r.p3.y; t->p3.z=r.p3.z;
 }
30 /**

* @brief Create a triangle from 3 coords.
* @param pl first coord
* @param p2 second coord
* @param p3 third coord
* @param *t the resulting triangle
*/
__host__ __device__ void triangle_from_coords(coord_t p1, coord_t p2, coord_t p3,
triangle_t *t){
t->p1 = p1; t->p2 = p2; t->p3 = p3;
}
42 /**
 * @brief Create a triangle from float values.
 * @param p1x
* @param ply
* @param plz
* @param p2x
* @param p2y
* @param p2z
* @param p3x
* @param p3y
* @param p3z
* @param *t the resulting triangle
*/
__host__ __device__ void triangle_from_value(float p1x, float p1y, float p1z,
float p2x, float p2y, float p2z,
float p3x, float p3y, float p3z, triangle_t *t){
t->p1.x=p1x; t->p1.y=p1y; t->p1.z=p1z;
t->p2.x=p2x; t->p2.y=p2y; t->p2.z=p2z;
t->p3.x=p3x; t->p3.y=p3y; t->p3.z=p3z;
}
64 /**
 * @brief Multiply a vector by a scalar.
* @param v the vector
* @param c the scalar
* @return the resulting vector
*/
__host__ __device__ vector_t vector_by_scalar(vector_t v, float c){
v.x *= c;
v.y *= c;
v.z *= C;
return v;
}
78 /**
 * @brief Project a triangle on a plane.
* @param tri the triangle to project
* @param pl the plane to project on
* @param *proj the projected triangle
* @return the projected triangle

```
29
41
63
77
```

* @see GTCG, section 12.1, page 663
*/
__host__ __device__ triangle_t triangle_proj_on_plane(triangle_t tri, plane_t pl,
triangle_t *proj){
vector_t n;
//the plane normal needs to be normalized first
normalize(pl.normal,n);
sub3d(proj->p1,
tri.p1,
vector_by_scalar(n, dot(tri.p1,n)+pl.d));
sub3d(proj->p2,
tri.p2,
vector_by_scalar(n, dot(tri.p2,n)+pl.d));
sub3d(proj->p3,
tri.p3,
vector_by_scalar(n, dot(tri.p3,n)+pl.d));
return *proj;
}
/**
* @brief Project a point on a line.
* @param p the point
* @param l the line to project on
* @param *p_bis the projected point
* @return the projected point
* @see GTCG, section 11.5.4
*/
__host__ __device__ coord_t point_proj_on_line(coord_t p, line_t l, coord_t *p_bis){
vector_t v, d;
float t;
//the line normal needs to be normalized first
normalize(d, l.direction);
t = dot(d, vector_from_points(l.p,p,\&v));
add3d(*p_bis, l.p, vector_by_scalar(d, t));
return *p_bis;
}
* @brief Create a vector from two points.
 * @param m the start point
 * @param n the end point
 * @param *mn the resulting vector
 * @return the resulting vector
*/
__host__ __device__ vector_t vector_from_points(coord_t m, coord_t n, vector_t *mn) {
mn->x = n.x-m.x;
mn->y = n.y-m.y;
mn->z = n.z-m.z;

```
129
130 /**
```

 return *mn;
 }

* @brief Cross product between two vectors
* @param a the first vector
* @param b the second vector
* @param *r the resulting vector
* @return the resulting vector
*/
__host__ __device__ vector_t cross(vector_t a, vector_t b, vector_t *r) {
r->x = a.y*b.z - a.z*b.y;
r->y = a.z*b.x - a.x*b.z;
r->z = a.x*b.y - a.y*b.x;
return *r;
}
/**
 * @brief Point to plane distance.
* @param p the point
* @param pl the plane
* @return the distance
* @see GTCG, section 10.3.1, page 374
*/
__host__ __device__ float point_to_plane_dist(coord_t p, plane_t pl){
vector_t v;
vector_from_points(pl.p,p,\&v);
return dot(pl.normal, v);
}
/**
 * @brief Obtains the plane of a triangle.
* @param t the triangle
* @param *pl the corresponding plane
* @return the corresponding plane
*/
__host__ __device__ plane_t triangle_to_plane(triangle_t t, plane_t *pl){
vector_t v1, v2;
coord_t zero_p = {0.0f,0.0f,0.0f};
//Compute triangle's normal and define the plane by cross product
vector_from_points(t.p1, t.p2, \&v1);
vector_from_points(t.p1, t.p3, \&v2);
cross(v1, v2, \&(pl->normal));
//A triangle's point is arbitrary chosen to define the plane
pl->p = t.p1;
//the distance to origin is computed
pl->d = point_to_plane_dist(zero_p, *pl);
return *pl;
}

```
145
146 /**
201
```

/**

* @brief Obtains the projection of a triangle on a line.
* @param t the triangle
* @param d the direction of the line
* @param *min the proj starting point
* @param *max the proj ending point
*/

```
\(\qquad\)
``` __device__ void triangle_proj_on_line(triangle_t t, vector_t d, float *min, float *max) \{
int i;
float temp;
coord_t tri_points_array[3];
tri_points_array[0] = t.p1; tri_points_array[1] = t.p2; tri_points_array[2] = t.p3;
//base define of min and max
*min \(=\) *max \(=\operatorname{dot}(d, \quad t . p 1) ;\)
//find the projection interval
for (i=1;i<3;i++) \{
temp = dot(d, tri_points_array[i]);
if (temp < *min)
*min = temp;
else if (temp > *max)
*max \(=\) temp; \}
\}
**
* Qbrief Obtains the interval on the line corresponding with the triangle-line
intersection. It's
* part of the Moller and Haines algorithm.
* ©param the triangle
* @param dist[] the corresponding signed distances of the 3 points
* @param signs[] the side of each point relative to te line
* @param l the line
* @param *tO the intersection starting point
* @param *t1 the intersection ending point
* @see order_points()
*/
_host__ _ uint8_t signs[], line_t l, coord_t *t0, coord_t *t1)\{
vector_t v;
float scalar; coord_t p[3];
//Project the first triangle points on the line
point_proj_on_line(t.p1, l, \&p[0]); point_proj_on_line(t.p2, l, \&p[1]); point_proj_on_line(t.p3, l, \&p[2]); /lorder points (necessary for the equations below to works) order_points(p, dist, signs); //Compute to coord
```

```
 vector_from_points(p[0], p[2], &v);
 scalar = dist[0] - dist[2]==0?0:dist[0] / (dist[0] - dist[2]);
 v = vector_by_scalar(v, scalar);
 add3d(*t0, p[0], v);
 //Compute t1 coord
 vector_from_points(p[1], p[2], &v);
 scalar = dist[1] - dist[2]==0?0:dist[1] / (dist[1] - dist[2]);
 v = vector_by_scalar(v, scalar);
 add3d(*t1, p[1], v);
}
271 * @brief Realize a 2D intersection test between two triangles.
272 * Thus the test is realized on the same plane.
279 * @param t0 the first triangle
280 * @param t1 the second triangle
281 * @param pl the plane on which to project
282 * @return 1 = intersect, 0 = no intersection
 * @brief Prepare (order) the three points of a triangle for the Moller and Haines
 algorithm.
```

[^3]269
270 /**
273 *
274
275
276
277
278 *
283 *
284
285
286
287
288
289
312 /**
314 *

```
* @param dist[] the corresponding distances from each point to the line
* @param sides[] the side of each point relative to the line
* @see triangle_line_intersection_interval()
*/
__host__ __device__ void order_points(coord_t p[], float dist[], uint8_t sides[]){
 coord_t p_tmp;
 float dist_tmp;
 int i=0;
 //No point on the line = standard ordering (the point alone on his side is placed in
 last position)
 if(sides[2] == 0){
 //if the point alone is negative
 if(sides[0] == 2) {
 for(i=0;i<3;i++){
 if(dist[i]<0){
 p_tmp=p[2]; dist_tmp=dist[2];
 p[2]=p[i]; dist[2]=dist[i];
 p[i]=p_tmp; dist[i]=dist_tmp;
 break;
 }
 }
 }
 //if the point alone is positive
 else if(sides[1] == 2){
 for(i=0;i<3;i++) {
 if(dist[i]>0){
 p_tmp=p[2]; dist_tmp=dist[2];
 p[2]=p[i]; dist[2]=dist[i];
 p[i]=p_tmp; dist[i]=dist_tmp;
 break;
 }
 }
 }
 }
 //One point is on the line
 else if(sides[2] == 1){
 //the other points are on the same side of the line
 if(sides[0] == 2 || sides[1] == 2){
 for(i=0;i<3;i++){
 if(dist[i]==0){
 p_tmp=p[2]; dist_tmp=dist[2];
 p[2]=p[i]; dist[2]=dist[i];
 p[i]=p_tmp; dist[i]=dist_tmp;
 break;
 }
 }
 }
 //One point is on one side and the other point on the other side
 else if(sides[1]==1 && sides[0]==1){
 //The last point is the one on the line, need to swap
 if(dist[2]==0) {
 p_tmp=p[2]; dist_tmp=dist[2];
 p[2]=p[0]; dist[2]=dist[0];
 p[0]=p_tmp; dist[0]=dist_tmp;
```

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

```
 }
 }
 }
 //Two point are on the line
 else if(sides[2] == 2){
 for(i=0;i<3;i++){
 if(dist[i]==0) {
 p_tmp=p[2]; dist_tmp=dist[2];
 p[2]=p[i]; dist[2]=dist[i];
 p[i]=p_tmp; dist[i]=dist_tmp;
 break;
 }
 }
 }
}
* @brief Test the intersection between two triangles using the Moller and Haines :
* the "interval overlap method".
*
* @param TO the first triangle
* @param T1 the second triangle
* @param PO the plane of TO
* @param P1 the plane of T1
* @param L the line on which to compute the interval
* @param dist_TO[] the signed distance for each point of TO to P1
* @param dist_T1[] the signed distance for each point of T1 to PO
* @param signs_TO[] the side of each TO point respect to P1
* @param signs_Tl[] the side of each T1 point respect to PO
* @return 1 = intersection, 0 = no intersection
*/
__host_
```

$\qquad$

``` device_
``` \(\qquad\)
``` uint8_t intervals_overlap(triangle_t T0, triangle_t T1, plane_t P0, plane_t P1, line_t L, float dist_T0[], float dist_T1[], uint8_t signs_T0[], uint8_t signs_T1[])\{
 uint8_t overlap=0;
 vector_t v, d;
 coord_t T00, T01, T10, T11;
 float t00, t01, t10, t11;
 float min, max;
 //the line direction vector needs to be normalized here first
 normalize(d, L.direction);
 //Compute for both triangles intersection with the line
 triangle_line_intersection_interval(T0, dist_T0, signs_T0, L, &T00, &T01);
 triangle_line_intersection_interval(T1, dist_T1, signs_T1, L, &T10, &T11);
 /*
 * here we compute each value for t00, t01, .. as the (signed) norm of the vector
 * defined by the point P of the line and each intersection point computed before
 */
 vector_from_points(L.p, T00, &v);
 t00 = dot(d,v);
 vector_from_points(L.p, T01, &v);
 t01 = dot(d,v);
 vector_from_points(L.p, T10, &v);
```

389
390 /**

```
 t10 = dot(d,v);
 vector_from_points(L.p, T11, &v);
 t11 = dot(d,v);
 /* Check if the intervals computed before overlap or not */
 min = t00<t01?t00:t01;
 max = t01>t00?t01:t00;
 if((t10 >= min && t10 <= max) ||
 (t11 >= min && t11 <= max)
) {
 overlap=1;
 }
 min = t10<t11?t10:t11;
 max = t11>t10?t11:t10;
 if((t00 >= min && t00 <= max) ||
 (t01 >= min && t01 <= max)
) {
 overlap=1;
 }
 return overlap;
* @brief Find the resulting line of two planes intersection.
* @param pll the first plane
* @param pl2 the second plane
* @param *line the resulting line
* @return I indicate that the planes intersect
 O indicate that the planes don't intersect (parallels)
 * @see GTCG, section 11.5.1, page 529
 */
__host__ _
 __device__
 _ uint8_t planes_intersection(plane_t pl1, plane_t pl2, line_t *line){
 vector_t v;
 float n1_n2_dot, n1_norm_sqr, n2_norm_sqr, a, b;
 //the line direction
 cross(pl1.normal, pl2.normal, &v);
 //if planes are parallels -> return
 if(v.x==0.0f && v.y==0.0f && v.z==0.0f) {
 return 0;
 }
 else
 {
 line->direction = v;
 n1_n2_dot = dot(pl1.normal, pl2.normal);
 n1_norm_sqr = dot(pl1.normal, pl1.normal);
 n2_norm_sqr = dot(pl2.normal, pl2.normal);
 a=0;b=0;
 //scalars used to find a point on the line (it's a linear combination of the two
 planes normals)
```

\}
457
458 /**

## detect-tri2tris-intersection.h <br> detect-tri2tris-intersection.h

```
 **
 #define COMPUTE_ALL_INTERSECTION 0x01
 //! The functions will printf some text when error occurs
 #define VERBOSE_MODE 0x02
 /** By default the function avoid the Microsoft TDR to trigger that kill the cuda kernel if
 it's running for more then 2 sec by using a workaround.
 This flag force the function to not use the workaround. Note that the workaround only
 working for a single GPU computation.
 To manually deactivate the TDR trigger : HKLM\\SYSTEM\\CurrentControlSet\\Control\\
 GraphicsDrivers\\ --> DWORD : TdrLevel = 0 */
 #define NO_WDDM_TDR_WORKAROUND 0x04
 //! Allow to force the use of a single device to compute the intersections even if there is
 more then one CUDA-capable device, the first device will be used
 #define FORCE_SINGLE_GPU_COMPUTATION 0x08
25 #ifdef __cplusplus
extern "C"{
#endif
```

```
 * \file detect-tri2tris-intersection.h
```

    * \file detect-tri2tris-intersection.h
    * lauthor Romain Maffina
    * lauthor Romain Maffina
    * Iversion 1.0
    * Iversion 1.0
    * \brief Provide tools to detect intersections between triangles.
    * \brief Provide tools to detect intersections between triangles.
    *
    *
    */
    */
    #ifndef __DETECT_TRI2TRIS_INTERSECTION_
    #ifndef __DETECT_TRI2TRIS_INTERSECTION_
    #define __DETECT_TRI2TRIS_INTERSECTION_
    #define __DETECT_TRI2TRIS_INTERSECTION_
    #include "geometric-types.h"
    #include "geometric-types.h"
    //! Force the two intersect fct to compute intersections for the whole array even if an
    //! Force the two intersect fct to compute intersections for the whole array even if an
        intersection as already been detected
    ```
 intersection as already been detected
```

```
void config_reset();
```

28
29

```
 if((n1_n2_dot*n1_n2_dot - n1_norm_sqr * n2_norm_sqr)!=0) {
 a = (pl2.d * n1_n2_dot - pl1.d * n2_norm_sqr) / (n1_n2_dot*n1_n2_dot -
 n1_norm_sqr * n2_norm_sqr);
 b = (pl1.d * n1_n2_dot - pl2.d * n1_norm_sqr) / (n1_n2_dot*n1_n2_dot -
 n1_norm_sqr * n2_norm_sqr);
 }
 //we define the line point
 add3d(
 line->p,
 vector_by_scalar(pl1.normal, a),
 vector_by_scalar(pl2.normal, b)
);
 //Correction
 line->p.x = -line->p.x;
 line->p.y = -line->p.y;
 line->p.z = -line->p.z;
 }
return 1;
```

24

```
void config_set(uint8_t config);
int8_t tri2tris_intersection_detect_gpu(triangle_t ref, triangle_t tri_array[], int
 array_sz, uint8_t result_array[]);
int8_t tri2tris_intersection_detect_cpu(triangle_t ref, triangle_t tri_array[], int
 array_sz, uint8_t result_array[]);
#ifdef __cplusplus
36 #endif
38 #endif
```

33
35 \}
37

## detect-tri2tris-intersection.cu

```
/**
 * \file detect-tri2tris-intersection.cu
 * lauthor Romain Maffina
 * Iversion 1.0
 * \brief Provide tools to detect intersections between triangles.
 *
 */
#include <stdio.h>
#include "detect-tri2tris-intersection.h"
#include "geometric-tools.cu" // Limitation, CUDA have no linker
/**********/
/* GLOBAL */
/***********/
//!configuration flags. @see config_set()
uint8_t flags = 0x00;
/**
 * @brief Reset the configuration.
 * @see config_set()
 */
void config_reset(){
 flags = 0x00;
}
/**
* @brief Set some configuration.
* @param config the configuration
* @see COMPUTE_ALI_INTERSECTION, VERBOSE_MODE, NO_WDDM_TDR_WORKAROUND,
 FORCE_SINGLE_GPU_COMPUTATION, config_reset()
* Here is a example of use : config_set(VERBOSE_MODE | NO_WDDM_TDR_WORKAROUND);
* By default the tools run silent (no printf), try to compute on multiples GPU if possible
 ,
 * don't handle the TDR trigger problem and return once a intersection has been detected.
*/
void config_set(uint8_t config){
 flags |= config;
}
42 /**
* @brief Test the intersection between two triangles.
```

41
43

```
*
* @param TO the first triangle
* @param T1 the second triangle
* @return 0=don't intersect
 I=intersect
* @see The book "Geometric Tools for Computer Graphics", p.542
*
* This function is based on the outline given in the book.
*/
_host____device__ uint8_t intersect(triangle_t T0, triangle_t T1){
plane_t P0, P1;
float dist_T0[3], dist_T1[3];
uint8_t signs_T0[3] = { 0 }, signs_T1[3] = { 0 };
line_t L;
 /* 2.Compute the plane equation of T0 */
 triangle_to_plane(T0, &PO);
 /* 3.Compute the signed distances of T1 to PO */
 dist_T1[0] = point_to_plane_dist(T1.p1, P0);
 dist_T1[1] = point_to_plane_dist(T1.p2, P0);
 dist_T1[2] = point_to_plane_dist(T1.p3, P0);
 /* Compute side of TI vertices relative to PO */
 if(dist_T1[0] > 0) signs_T1[0]++; else if(dist_T1[0]<0) signs_T1[1]++; else signs_T1
 [2]++;
 if(dist_T1[1] > 0) signs_T1[0]++; else if(dist_T1[1]<0) signs_T1[1]++; else signs_T1
 [2]++;
 if(dist_T1[2] > 0) signs_T1[0]++; else if(dist_T1[2]<0) signs_T1[1]++; else signs_T1
 [2]++;
 /* 4. Quick reject if all vertices of Tl are on one side of PO */
 if(signs_T1[0] == 3 || signs_T1[1] == 3)
 return 0;
 /* 5. Compute the plane equation of T1 */
 triangle_to_plane(T1, &P1);
 /* 6. See if planes are coincident to choose the correct intersection test */
 if(planes_intersection(P0, P1, &L) == 0) {
 //planes are coincident = 2D intersection test by Separated Axes method
 return intersection_test_2d(T0, T1, P0);
 }
 else{
 //planes are not coincident = standard "interval overlap method" intersection test
 /* Compute the signed distances of TO to P1 */
 dist_T0[0] = point_to_plane_dist(T0.p1, P1);
 dist_T0[1] = point_to_plane_dist(T0.p2, P1);
 dist_T0[2] = point_to_plane_dist(T0.p3, P1);
 /* Compute side of TO vertices relative to PI */
 if(dist_T0[0] > 0) signs_T0[0]++; else if(dist_T0[0]<0) signs_T0[1]++; else
 signs_T0[2]++;
 if(dist_T0[1] > 0) signs_T0[0]++; else if(dist_T0[1]<0) signs_T0[1]++; else
 signs_T0[2]++;
```

97

98
99
100
101
102
103
104
105
106
107
108
109
110 \}
111
112
113
114
115
116

```
 if(dist_T0[2] > 0) signs_T0[0]++; else if(dist_T0[2]<0) signs_T0[1]++; else
 signs_T0[2]++;
 /* 7. Quick reject if all vertices of TO are on one side of P1 */
 if(signs_TO[0] == 3 || signs_T0[1] == 3)
 return 0;
 /* 8. Compute intersection line */
 //already done in if
 /* 9. Compute intervals */
 return intervals_overlap(T0, T1, P0, P1, L, dist_T0, dist_T1, signs_T0, signs_T1);
 }
/**************/
/* CPU STUFF */
/**************/
/**
* @brief CPU VERSION - Test the 3D intersection between a given triangle and each triangle
 contained in the array passed
 * @param ref the ref triangle
 * @param tri_array[] the triangles array
 * @param array_sz the size of the array
 * @param result_array[] the result for each triangle in tri_array
 * Greturn 0=no triangle of the array intersects the ref triangle,
 * I=at least one triangle of the array intersects the ref triangle
 -1=error
 * This function is using exactly the same algorithm as tri2tris_intersection_detect_gpu()
 * but it should be used only if the amound of triangles in array is less then 1M approx
 then the tri2tris_intersection_detect_gpu()
 * function become a lot quicker. It's running on I core only.
 */
int8_t tri2tris_intersection_detect_cpu(triangle_t ref, triangle_t tri_array[], int
 array_sz, uint8_t result_array[]){
 uint8_t x=0; //To remember a intersection occured, default=0
 int i;
 for(i=0;i<array_sz;i++) {
 result_array[i]=0;
 if(intersect(ref, tri_array[i])) {
 x=result_array[i]=1;
 if(!(flags & COMPUTE_ALL_INTERSECTION))
 break;
 }
 }
 return x;
}
/****************/
/* CUDA STUFF */
/***************/
```

```
/* Device variables */
//! Global on device (shared between GPU as well) intersect variable to know when a
 intersection as been found
154 __device__ uint8_t dev_intersect;
155 //! Used to store the configuration on the device at function call
156 __constant__ uint8_t dev_flags;
158 /* Prototypes */
int ConvertSMVer2Cores(int major, int minor);
void slit_kernel_call(triangle_t* dev_ref, triangle_t* dev_tri_array, int size, int
 nb_threads, uint8_t* dev_result_array);
161 __global__ void kernel(const triangle_t *ref, const triangle_t *tri_array, int array_sz,
 uint8_t *result_array);
165 * @brief Give the amount of CUDA cores of a device.
170 * Taken from the CUDA SDK Examples
 */
int ConvertSMVer2Cores(int major, int minor){
 // Defines for GPU Architecture types (using the SM version to determine the # of
 cores per SM
 typedef struct {
 int SM; // OxMm (hexidecimal notation), M = SM Major version, and m = SM
 minor version
 int Cores;
 } sSMtoCores;
 sSMtoCores nGpuArchCoresPerSM[] =
 { { 0x10, 8 },
 { 0x11, 8 },
 {0x12, 8 },
 {0\times13, 8 },
 { 0x20, 32 },
 { 0x21, 48 },
 { -1, -1 }
 };
 int index = 0;
 while (nGpuArchCoresPerSM[index].SM != -1) {
 if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
 return nGpuArchCoresPerSM[index].Cores;
 }
 index++;
 }
 printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
 return -1;
}
/**
* @brief This function split a kernel call into multiple calls. This is used to avoid
 Microsoft WDDM TDR to trigger.
* @param dev_ref the ref triangle
* @param dev_tri_array[] the triangles array
```

157
162
163
164 /**
166 *
167
168
169

```
* @param size the size of the array
* @param dev_result_array[] the result for each triangle in tri_array
* The WDDM TDR (Windows Display Driver Model - Timeout Detection and Recovery) is a
 protection to avoid freezed display
* in case of a display driver fail. It trigger after 2sec if the graphic driver can't
 recover the hand on the graphic device.
* Because a kernel occupies the device at 100% the TDR trigger and kill the driver and the
 running kernels to recover the
 * graphic card. Thus this function allows to execute kernels longer then 2 secondes.
*/
void slit_kernel_call(triangle_t* dev_ref, triangle_t* dev_tri_array, int size, int
 nb_threads, uint8_t* dev_result_array) {
 cudaDeviceProp devProp;
 cudaGetDeviceProperties(&devProp, 0);
 /* Adapt values to the device for kernel launches */
 int max_triangle_pro_kernel = ConvertSMVer2Cores(devProp.major,devProp.minor) * devProp
 .multiProcessorCount*20000;
 int nb_calls = (size+max_triangle_pro_kernel-1)/max_triangle_pro_kernel;
 /* Launch the split kernels synchronously (due to the cudaThreadSynchronize) */
 int i, launch_size = max_triangle_pro_kernel;
 for(i=0;i<nb_calls;i++) {
 //If it's the last call and a rest exist --> the size must be corrected
 if(i==nb_calls-1 && size%max_triangle_pro_kernel != 0)
 launch_size = size%max_triangle_pro_kernel;
 //Launch the current split kernel and synchronize to avoid WDDM TDR to trigger
 kernel<<<(launch_size+nb_threads-1)/nb_threads,nb_threads>>>(dev_ref, dev_tri_array
 +i*max_triangle_pro_kernel, launch_size, dev_result_array+i*
 max_triangle_pro_kernel);
 cudaDeviceSynchronize();
 }
}
/**
* @brief The kernel = the function that will execute on the device.
* @param ref the ref triangle
* @param tri_array[] the triangles array
* @param array_sz the size of the array
* @param result_array[] the result for each triangle in tri_array
*/
__global__ void kernel(const triangle_t *ref, const triangle_t *tri_array, int array_sz,
 uint8_t *result_array){
 //if config is set to compute all intersection then the if block is always done,
 //otherwise the computation is skipped once a intersection have been found
 if((dev_flags & COMPUTE_ALL_INTERSECTION) || !dev_intersect){
 //Calculate the index of the triangle for the current thread to compute
 intersection
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 //Control that we're not out of the array
 if(i<array_sz) {
```

```
 //Default value = not intersecting
 result_array[i]=0;
 //Intersection test between the ref triangle and the current triangle from
 array
 if(intersect(*ref, tri_array[i]))
 dev_intersect=result_array[i]=1;
 }
 }
}
/**
* @brief CUDA VERSION - Test the 3D intersection between a given triangle and each
 triangle contained in the array passed
 * @param ref the ref triangle
 * @param tri_array_full[] the triangles array
* @param array_sz_full the size of the array
* @param result_array_full[] the result for each triangle in tri_array
* @return 0=no triangle of the array intersects the ref triangle,
* I=at least one triangle of the array intersects the ref triangle
* -1=error
*
* This function is using exactly the same algorithm as tri2tris_intersection_detect_cpu()
* but it should be used only if the amound of triangles in array is more then lM approx.
 For smaller arrays
 * the CPU version should be quicker. It can run on multi-GPU.
*/
int8_t tri2tris_intersection_detect_gpu(triangle_t ref, triangle_t tri_array_full[], const
 int array_sz_full, uint8_t result_array_full[]){
 uint8_t intersect = 0;
 uint8_t *ptr_dev_intersect;
 triangle_t **tri_array = NULL;
 uint8_t **result_array = NULL;
 int *array_sz = NULL;
 int *nb_threads = NULL;
 triangle_t **dev_ref = NULL;
 triangle_t **dev_tri_array = NULL;
 uint8_t **dev_result_array = NULL;
 int device_count;
 cudaError_t cudaStatus;
 char str_debug[100] = "";
 // Get the device (=GPU) count to exploit them all
 cudaGetDeviceCount(&device_count);
 if(device_count==0)
 goto Error;
 // Force single GPU computation if configured
 if(flags & FORCE_SINGLE_GPU_COMPUTATION)
 device_count=1;
 // Allocate arrays of host pointers to dataset for each GPU to compute
 tri_array = (triangle_t**)calloc(device_count, sizeof(triangle_t));
```

```
result_array = (uint8_t**) calloc(device_count, sizeof(uint8_t));
array_sz = (int*)calloc(device_count, sizeof(int));
nb_threads = (int*)calloc(device_count,sizeof(int));
// Allocate arrays of device pointers for the parameters
dev_ref = (triangle_t**)calloc(device_count, sizeof(triangle_t));
dev_tri_array = (triangle_t**)calloc(device_count, sizeof(triangle_t));
dev_result_array = (uint8_t**)calloc(device_count, sizeof(uint8_t));
/* Allocate memory on devices and then copy contents */
int i;
for(i=0;i<device_count;i++){
/* Compute device-specific pointers and sizes */
//if last device AND array size cannot by fully devided by the number of devices
if(i==device_count-1 && array_sz_full%device_count!=0)
 array_sz[i] = array_sz_full/device_count + array_sz_full%device_count;
 else
 array_sz[i] = array_sz_full/device_count;
 tri_array[i] = tri_array_full + (i*(array_sz_full/device_count));
 result_array[i] = result_array_full + (i*(array_sz_full/device_count));
 // Set the target device for the next cudaXXX calls
 if((cudaStatus = cudaSetDevice(i)) != cudaSuccess){
 sprintf(str_debug, "cudaSetDevice failed!"); goto Error;
 }
 cudaDeviceProp dev_prop;
 cudaGetDeviceProperties(&dev_prop, i);
 int max_threads=dev_prop.regsPerBlock/48;
 nb_threads[i]=1;
 while(nb_threads[i] * 2<max_threads) {
 nb_threads[i] *= 2;
 };
 // Allocate ref triangle on device
 if((cudaStatus = cudaMalloc((void**)&dev_ref[i], sizeof(triangle_t))) !=
 cudaSuccess) {
 sprintf(str_debug, "cudaMalloc failed for ref triangle!"); goto Error;
 }
 // Allocate array of triangles on device
 if((cudaStatus = cudaMalloc((void**) &dev_tri_array[i], array_sz[i] * sizeof(
 triangle_t))) != cudaSuccess) {
 sprintf(str_debug, "cudaMalloc failed for array of triangles!"); goto Error;
 }
 // Allocate array for results
 if((cudaStatus = cudaMalloc((void**)&dev_result_array[i], array_sz[i] * sizeof(
 uint8_t))) != cudaSuccess) {
 sprintf(str_debug, "cudaMalloc failed for results array!"); goto Error;
 }
 // Copy ref triangle from host to device
 if((cudaStatus = cudaMemcpy(dev_ref[i], &ref, sizeof(triangle_t),
 cudaMemcpyHostToDevice)) != cudaSuccess) {
```

```
 sprintf(str_debug, "cudaMemcpy failed for ref triangle!"); goto Error;
 }
 // Copy array of triangles from host to device
 if((cudaStatus = cudaMemcpy(dev_tri_array[i], tri_array[i], array_sz[i] * sizeof(
 triangle_t), cudaMemcpyHostToDevice)) != cudaSuccess) {
 sprintf(str_debug, "cudaMemcpy failed for triangles array!"); goto Error;
 }
}
// Initialize global device intersect variable
cudaGetSymbolAddress((void **) &ptr_dev_intersect, "dev_intersect");
cudaMemset(ptr_dev_intersect,0,sizeof(uint8_t));
// Copy config flags to device
cudaMemcpyToSymbol("dev_flags", &flags, sizeof(flags));
/* Launch kernels */
if(device_count==1 && !(flags & NO_WDDM_TDR_WORKAROUND)) {
 slit_kernel_call(dev_ref[0], dev_tri_array[0], array_sz[0], nb_threads[0],
 dev_result_array[0]);
}else{
 for(i=0;i<device_count;i++) {
 cudaSetDevice(i);
 kernel<<<(array_sz[i]+nb_threads[i]-1)/nb_threads[i], nb_threads[i]>>>
 (dev_ref[i], dev_tri_array[i], array_sz[i], dev_result_array[i]);
 }
}
/* Synchronize host with devices and copy results back to host */
for(i=0;i<device_count;i++) {
 cudaSetDevice(i);
 // cudaDeviceSynchronize waits for the kernel to finish
 if((cudaStatus = cudaDeviceSynchronize()) != cudaSuccess) {
 sprintf(str_debug, "cudaDeviceSynchronize failed after launching addKernel!\n")
 ; goto Error;
 }
 // Copy results array from device to host
 if((cudaStatus = cudaMemcpy(result_array[i], dev_result_array[i], array_sz[i] *
 sizeof(uint8_t), cudaMemcpyDeviceToHost)) != cudaSuccess) {
 sprintf(str_debug, "cudaMemcpy failed for results array!"); goto Error;
 }
 }
// Recover the value of the global intersect variable
cudaMemcpyFromSymbol(&intersect, "dev_intersect", sizeof(uint8_t), 0,
 cudaMemcpyDeviceToHost);
/* Free allocated memory on devices and handle errors if some */
for(i=0;i<device_count;i++) {
 cudaSetDevice(i);
 cudaFree(dev_ref[i]);
 cudaFree(dev_tri_array[i]);
```

Error:

```
419 cudaFree(dev_result_array[i]);
420 }
421 if(flags & VERBOSE_MODE) {
422
4 2 3
424
425
426
427
428
4 2 9

\section*{D. 2 Test program}

\section*{main.c}
```

/**
* \file main.c
* lauthor Romain Maffina
* \version 1.0
* \brief Main, test program for triangle-triangle collisions.
*/
\#include <stdio.h>
\#include <stdlib.h>
\#include <string.h>
\#include "test-tools.h"
\#include "console.h"
\#include "viewer.h"
int main(int argc, char** argv){
int nb_triangles=10;
uint8_t console=0, help=0;
int i;
for(i=1;i<argc;i++){
if(!strcmp(argv[i], "-t") || !strcmp(argv[i], "--triangles") )
nb_triangles = atoi(argv[(i++)+1]);
else if(!strcmp(argv[i], "-b") || !strcmp(argv[i], "--benchmark") )
console=1;
else if(!strcmp(argv[i], "-h") || !strcmp(argv[i], "--help") )
help=1;
else{
printf("Error when parsing command line... exiting. Enter -h or --help
parameter.");
fflush(stdout);

```
```

            return EXIT_FAILURE;
            }
    }
    if(help) {
printf("This test program is composed of two smaller programs : a OpenGL viewer and
a console benchmark. It is intended to test the CPU and GPU (with CUDA)
version of a triangle-triangle intersection test algorithm.\n\n"
"Parameters:\n"
"\t -h or --help to shows help.\n"
"\t -t or --triangles to specify the number of triangles.\n"
"\t -b or --benchmark to run benchmark mode to compare CPU and GPU
algorithm.\n");
return EXIT_SUCCESS;
}
else if(console){
if(start_benchmark(argc, argv, nb_triangles)<0)
return EXIT_FAILURE;
return EXIT_SUCCESS;
}
else{
start_viewer(argc, argv, nb_triangles);
return EXIT_SUCCESS;
}

```
\}

\section*{test-tools.h}
```

**
* \file test-tools.h
* lauthor Romain Maffina
* Iversion 1.0
* \brief Toolbox associated with the test-program.
*/
\#ifndef TEST_TOOLS_H_
\#define TEST_TOOLS_H_
\#include "geometric-types.h"
\#define MAX_X 8
\#define MAX_Y 8
\#define MAX_Z 8
\#define TRIANGLE_SZ 5
extern triangle_t *tri_array;
extern uint8_t *tri_result_array;
extern triangle_t ref;
int chrono();
int tri_generator(uint32_t size);
void free_memory();
\#endif /* TEST_TOOLS_H_ *

```

\section*{test-tools.c}

1 /**
```

* \file test-tools.c
* lauthor Romain Maffina
* Iversion 1.0
* \brief Toolbox associated with the test-program.
*/
\#include <stdio.h>
\#include <stdlib.h>
\#include <time.h>
\#include <math.h>
\#include "test-tools.h"
\#include "geometric-tools.h"
/* Global */
triangle_t *tri_array = NULL;
uint8_t *tri_result_array = NULL;
triangle_t ref;
/* Models */
triangle_t ref_base = { { 2.0f,-2.0f,4.0f}, { 1.0f,5.0f,-2.0f}, {1.0f,-3.0f,-3.0f} };
triangle_t ref_special_cases = { { 0,-2,6}, { 0,5,0}, {0,-3,0} };
triangle_t special_cases_array[10] = {
{ {-2,-2,0}, {2,-3,0},{3,-1,0} },
{{2,-1,0}, {-2,-1.5,0}, {-3,0,0}},
{ {0,0,0}, {-2,0.5,0}, {-3,2,0} },
{ {0,0.5,0}, {2,0,0}, {3,1,0} },
{ {3,1.5,0}, {0,1,0}, {0,2,0}},
{ {-3,3,0}, {0,2.5,0}, {0,3.5,0}},
{{-2,4.7,0}, {0,3.7,0}, {2,4.7,0}},
{ {1.5,-3,5.5}, {-2,-2.00,5.5}, {1.5,0,5.5} }, //fully inside
{ {2,0,0.5}, {-2,0,1.5}, {1,0,4} }, //fully inside
{ {0,3,1}, {0,1,1.5}, {0,4,3} } //same plane
};
int chrono(){
static int call_count;
static clock_t start;
call_count++;
//second call, return the time lapse until last call
if(call_count%2==0) {
return (clock()-start);
}
//first call, store the start time
else{
start = clock();
}
return 0;
}
//int tri_generator(triangle_t *tri_array[], uint8_t *tri_result_array[], uint32_t size){
int tri_generator(uint32_t size){
static uint32_t nb_calls, last_size;
uint8_t special_cases_mode=0;

```
```

unsigned int i;
float x,y,z;
if(nb_calls==0)
srand(time(NULL));
//define reference triangle
triangle_from_triangle(ref_base, \&ref);
//Handle special cases mode
if(size==0){
special_cases_mode=1;
size = sizeof(special_cases_array)/sizeof(triangle_t);
triangle_from_triangle(ref_special_cases, \&ref);
}
if(size != last_size){
do {
tri_array = (triangle_t*)realloc(tri_array, sizeof(triangle_t)*size);
}while(tri_array==NULL \&\& (size-=10));
tri_result_array = (uint8_t*)realloc(tri_result_array, sizeof(uint8_t)*size);
if(tri_result_array==NULL) return -1;
}
//define triangles
for(i=0;i<size;i++) {
tri_result_array[i]=0;
if(special_cases_mode){
tri_array[i].p1.x = special_cases_array[i].p1.x; tri_array[i].p1.y =
special_cases_array[i].p1.y; tri_array[i].p1.z = special_cases_array[i].p1.
z;
tri_array[i].p2.x = special_cases_array[i].p2.x; tri_array[i].p2.y =
special_cases_array[i].p2.y; tri_array[i].p2.z = special_cases_array[i].p2.
z;
tri_array[i].p3.x = special_cases_array[i].p3.x; tri_array[i].p3.y =
special_cases_array[i].p3.y; tri_array[i].p3.z = special_cases_array[i].p3.
z;
}else{
//gen base coords
x=(rand()% (MAX_X*10)-MAX_X*10/2)/10.0f;
Y}=(\operatorname{rand}()%(MAX_Y*10)-MAX_Y*10/2)/10.0f
z=(rand()%(MAX_Z*10) -MAX_Z*10/2)/10.0f;
//assign coords to the triangle using base coord plus variance
tri_array[i].p1.x = x+rand()%TRIANGLE_SZ; tri_array[i].p1.y = y+rand()%
TRIANGLE_SZ, tri_array[i].p1.z = z+rand()%TRIANGLE_SZ;
tri_array[i].p2.x = x+rand()%TRIANGLE_SZ; tri_array[i].p2.y = y+rand()%
TRIANGLE_SZ, tri_array[i].p2.z = z+rand()%TRIANGLE_SZ;
tri_array[i].p3.x = x+rand()%TRIANGLE_SZ; tri_array[i].p3.y = y+rand()%
TRIANGLE_SZ, tri_array[i].p3.z = z+rand()%TRIANGLE_SZ;
}
}
last_size=size;
nb_calls++;
return size;

```

\section*{viewer.h}
```

/**
* \file viewer.h
* lauthor Romain Maffina
* Iversion 1.0
* \brief Minimalistic openGL viewer for triangle-triangle collision tester.
*/
\#ifndef OPENGL_TOOLS_H_
\#define OPENGL_TOOLS_H_
\#include <stdint.h>
extern void start_viewer(int argc, char** argv, uint32_t nb_tri);
16 \#endif /* OPENGL_TOOLS_H_ */

```
14
15

\section*{viewer.c}
```

/**
* \file viewer.c
* lauthor Romain Maffina
* Iversion 1.0
* \brief Minimalistic openGL viewer for triangle-triangle collision tester.
*/
\#include <stdio.h>
\#include <GL/freeglut.h>
\#include "viewer.h"
\#include "test-tools.h"
\#include "detect-tri2tris-intersection.h"
\#include "geometric-tools.h"
/**

* @struct color_t
* @brief Represent a color in a RGB way.
*/
typedef struct{
uint8_t R,G,B;
} color_t;
void draw_axis(void);
void opengl_draw_plane_from_triangle(triangle_t t, color_t c);
void opengl_draw_triangle(triangle_t t, color_t c, char* str);
void opengl_draw_line(line_t l, color_t c, uint8_t coeff);
void opengl_draw_segment(coord_t pt1, coord_t pt2);
void opengl_text_overlay(float x, float y, char *str);
void opengl_text_label(float x, float y, float z, void *font, const char *str);

```
30
```

const color_t COLOR_BLUE = {0,0,255};
const color_t COLOR_GREY = {128,128,128};
const color_t COLOR_ORANGE = {255,160,0};
const color_t COLOR_RED = {255,0,0};
const color_t COLOR_BLACK = {0,0,0};
uint8_t cfg_show_help=0;
uint8_t cfg_show_origin=0;
uint8_t cfg_show_tri_coord=0;
uint8_t cfg_show_tri_id=0;
uint8_t cfg_show_planes=0;
uint8_t cfg_special_cases=0;
uint8_t cfg_use_cuda=0;
static uint32_t nb_triangles;
float angle_around_Z=0;
float zoom = 0.15f;
/**
* Draw at point (0;0;0) the 3 axis X,Y and Z.
*/
void draw_axis(void){
glLineWidth(1);
glPushMatrix();
//glScalef(1,1,1);
glBegin(GL_LINES);
glColor3ub(0,0,255);
glVertex3f(0,0,0);
glVertex3f(1,0,0);
glColor3ub (0,255,0);
glVertex3f(0,0,0);
glVertex3f(0,1,0);
glColor3ub (255,0,0);
glVertex3f(0,0,0);
glVertex3f(0,0,1);
glEnd();
glPopMatrix();
}
/**
* Draw a corresponding triangle's plane.
*

* @param t the triangle
* @param c the color of the plane
*/
void opengl_draw_plane_from_triangle(triangle_t t, color_t c){
vector_t v1, v2;
vector_from_points(t.p1, t.p2, \&v1);
vector_from_points(t.p1, t.p3, \&v2);
glBegin(GL_QUADS);
glColor4ub(c.R,c.G,c.B, 32);
glVertex3f(t.p1.x + 10*(v1.x + v2.x), t.p1.y + 10*(v1.y + v2.y), t.p1.z + 10*(v1.z
+ v2.z));
glVertex3f(t.p1.x + 10*(v1.x - v2.x), t.p1.y + 10*(v1.y - v2.y), t.p1.z + 10*(v1.z
- v2.z));
glVertex3f(t.p1.x + 10*(-v1.x - v2.x), t.p1.y + 10*(-v1.y - v2.y), t.p1.z + 10*(-v1
.z - v2.z));

```
```

        glVertex3f(t.p1.x + 10*(-v1.x + v2.x), t.p1.y + 10*(-v1.y + v2.y), t.p1.z + 10*(-v1
        .z + v2.z));
    glEnd();
    }
/**

* Draw a triangle.
* @param t the triangle
* @param c the triangle's color
* @param *str the triangle name
*/
void opengl_draw_triangle(triangle_t t, color_t c, char* str){
char str_coord[100];
coord_t mid;
glBegin(GL_TRIANGLES);
glColor3ub(c.R,c.G,c.B);
glVertex3d(t.p1.x, t.p1.y, t.p1.z);
glVertex3d(t.p2.x, t.p2.y, t.p2.z);
glVertex3d(t.p3.x, t.p3.y, t.p3.z);
glEnd();
if(cfg_show_tri_coord){
sprintf(str_coord, "(%.2f;%.2f;%.2f)", t.p1.x, t.p1.y, t.p1.z);
opengl_text_label(t.p1.x, t.p1.y, t.p1.z, GLUT_BITMAP_HELVETICA_10, str_coord);
sprintf(str_coord, "(%.2f;%.2f;%.2f)", t.p2.x, t.p2.y, t.p2.z);
opengl_text_label(t.p2.x, t.p2.y, t.p2.z, GLUT_BITMAP_HELVETICA_10, str_coord);
sprintf(str_coord, "(%.2f;%.2f;%.2f)", t.p3.x, t.p3.y, t.p3.z);
opengl_text_label(t.p3.x, t.p3.y, t.p3.z, GLUT_BITMAP_HELVETICA_10, str_coord);
}
if(cfg_show_tri_id \&\& str!=NULL) {
glColor3ub((c.R-100)%255,(c.G-100)%255,(C.B-100)%255);
mid.x = (t.p1.x + t.p2.x + t.p3.x)/3;
mid.y = (t.p1.y + t.p2.y + t.p3.y)/3;
mid.z = (t.p1.z + t.p2.z + t.p3.z)/3;
opengl_text_label(mid.x, mid.y, mid.z, GLUT_BITMAP_9_BY_15, str);
}
if(cfg_show_planes)
opengl_draw_plane_from_triangle(t, c);
}
/**
    * Draw a line.
    * @param l the line
    * @param c the color of the line
    * @param coeff size of the line
*/
void opengl_draw_line(line_t l, color_t c, uint8_t coeff){
coord_t pt1, pt2;
vector_t d;
d.x = l.direction.x;
d.y = l.direction.y;
d.z = l.direction.z;

```
```

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159 }
160
161 /**

* Draw a segment.
* 
* @param pt1 the first point
* @param pt2 the second point
*/
void opengl_draw_segment(coord_t pt1, coord_t pt2){
glPointSize(7);
glBegin(GL_POINTS);
glColor3ub (255,0,0);
glVertex3d(pt1.x, pt1.y, pt1.z);
glVertex3d(pt2.x, pt2.y, pt2.z);
glEnd();
glBegin(GL_LINES);
glColor3ub (255,0,0);
glVertex3d(pt1.x, pt1.y, pt1.z);
glVertex3d(pt2.x, pt2.y, pt2.z);
glEnd();
}
/**
* Print an overlay string to the screen.
* 
* @param x the x coordinate
* @param y the y coordinate
* @param *str the string to print
* 
* @see From http://www.lighthouse3d.com
*/
void opengl_text_overlay(float x, float y, char *str) {
char *c;
// switch to projection mode
glMatrixMode(GL_PROJECTION);
// save previous matrix which contains the
//settings for the perspective projection
glPushMatrix();
// reset matrix
glLoadIdentity();

```
 // set a 2D orthographic projection
 gluOrtho2D(0, glutGet(GLUT_WINDOW_WIDTH), glutGet(GLUT_WINDOW_HEIGHT), 0);
 // switch back to modelview mode
 glMatrixMode (GL_MODELVIEW);
 //set_orthographic_projection(glutGet(GLUT_SCREEN_WIDTH), glutGet(GLUT_SCREEN_HEIGHT));
 glPushMatrix();
 glLoadIdentity();
 glColor3ub (255, 0, 0) ;
 glRasterPos \(3 \mathrm{f}(\mathrm{x}, \mathrm{y}, 0)\);
 for (c=str; *c ! \(=' \backslash 0^{\prime} ; ~ c++\)) \{
 glutBitmapCharacter(GLUT_BITMAP_9_BY_15, *C);
 \}
 //restore_perspective_projection();
 glMatrixMode (GL_PROJECTION);
 // restore previous projection matrix
 glPopMatrix();
 // get back to modelview mode
 glMatrixMode(GL_MODELVIEW);
\}
/**
* Label a point in the 3D space.
* @param x the x coordinate
* @param y the y coordinate
* @param z the \(z\) coordinate
* @param *font the font to use
* @param *str the string to use
 * @see GLUT_BITMAP_ for available fonts
 * @see From http://www.lighthouse3d.com
*/
void opengl_text_label(float x, float y, float z, void *font, const char *str)
\{
 glDisable(GL_TEXTURE_2D);
 glDisable(GL_DEPTH_TEST);
 glRasterPos3f(x, y,z);
 while(*str)
 \{
 glutBitmapCharacter(font, *str);
 str++;
 \}
 glEnable(GL_TEXTURE_2D);
 glEnable(GL_DEPTH_TEST);
\}
void new_random_triangles() \{
 nb_triangles = tri_generator(nb_triangles);
 if (cfg_use_cuda)
 tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array);
 else
\}
 tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array);
void new_specials_triangles() \{
 nb_triangles = tri_generator (0);
 if(cfg_use_cuda)
 tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array);
 else
 tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array);
\}

// HANDLERS

void keyboard_handle(unsigned char key, int \(x\), int y) \{
 static uint32_t previous_size;
 switch(key) \{
 case ' \(\mathrm{g}^{\prime}\) :
 cfg_use_cuda=cfg_use_cuda==0?1:0;
 break;
 case \(0 \times 20\) :
 if(cfg_special_cases==0) new_random_triangles();
 break;
 case 'h':
 cfg_show_help=cfg_show_help==0?1:0;
 break;
 case 'c':
 cfg_show_tri_coord=cfg_show_tri_coord==0?1:0;
 break;
 case 'i':
 cfg_show_tri_id=cfg_show_tri_id==0?1:0;
 break;
 case 'o':
 cfg_show_origin=cfg_show_origin==0?1:0;
 break;
 case 'p':
 cfg_show_planes=cfg_show_planes==0?1:0;
 break;
 case 't':
 cfg_special_cases=cfg_special_cases==0?1:0;
 if(cfg_special_cases) \{
 previous_size=nb_triangles;
 new_specials_triangles();
 \}else\{
 nb_triangles=previous_size;
 new_random_triangles();
 \}
 break;
 case ' + ' :
 if(!cfg_special_cases) \{
 nb_triangles++;
 new_random_triangles();
 \}
 break;
 case '-':
 if(!cfg_special_cases \&\& nb_triangles>1) \{
 nb_triangles--;
 new_random_triangles();
```

            }
            break;
            /* Move ref triangle */
            case 'e':
            ref.p1.z += 0.0625; ref.p2.z += 0.0625; ref.p3.z += 0.0625;
            break;
            case 'q':
            ref.p1.z -= 0.0625; ref.p2.z -= 0.0625; ref.p3.z -= 0.0625;
            break;
            case 's':
            ref.p1.x += 0.0625; ref.p2.x += 0.0625; ref.p3.x += 0.0625;
            break;
            case 'w':
            ref.p1.x -= 0.0625; ref.p2.x -= 0.0625; ref.p3.x -= 0.0625;
            break;
            case 'a':
            ref.p1.y -= 0.0625; ref.p2.y -= 0.0625; ref.p3.y -= 0.0625;
            break;
            case 'd':
            ref.p1.y += 0.0625; ref.p2.y += 0.0625; ref.p3.y += 0.0625;
            break;
    }
    if(cfg_use_cuda)
        tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array);
    else
            tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array);
    glutPostRedisplay();
    }
void special_key_handle(int key, int x, int y){
switch(key){
case GLUT_KEY_UP:
zoom += 0.03f;
break;
case GLUT_KEY_DOWN:
zoom -= 0.03f;
break;
case GLUT_KEY_LEFT:
angle_around_Z -= 0.1f;
break;
case GLUT_KEY_RIGHT:
angle_around_Z += 0.1f;
break;
}
glutPostRedisplay();
}
374 void mouse_motion_handle(int x,int y) {
375 static int last_x;
377 angle_around_z += last_x-x<0 ? 3 : -3;
378 last_x = x;

```
```

    glutPostRedisplay();
    ```
```

    glutPostRedisplay();
    ```
373
376
379

322
 // Get Back to the Modelview
 glMatrixMode(GL_MODELVIEW);
\}
408
409 void display_handle() \{
410 unsigned int i;
411 char str[100];
412 color_t c;
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
 //We draw the axis in \(0,0,0\)
 if(cfg_show_origin)
 draw_axis();
438
439
id resize_handle(int w, int h) \{
//Lighthouse
 float ratio;
 // Prevent a divide by zero, when window is too short
 // (you cant make a window of zero width).
 if (\(\mathrm{h}==0\))
 \(\mathrm{h}=1\);
 ratio \(=1.0 f * \mathrm{w} / \mathrm{h}\);
 // Use the Projection Matrix
 glMatrixMode(GL_PROJECTION);
 // Reset Matrix
 glLoadIdentity();
 // Set the viewport to be the entire window
 glViewport(0, 0, w, h);
 // Set the correct perspective.
 gluPerspective(45,ratio,1,1000);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glEnable(GL_BLEND) ;
 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;
 gluLookAt (3, 0, 2, 0, 0, 0.1, 0, 0, 1);
 glScalef(zoom, zoom, zoom);
 glRotatef(angle_around_Z, 0, 0,1);
 //We draw the ref triangle and his plane
 opengl_draw_triangle(ref, COLOR_BLUE, "");
 //We draw all the triangles in the array
 for (i=0;i<nb_triangles;i++) \{
 if(tri_result_array[i]) c=COLOR_ORANGE; else C=COLOR_GREY;
 sprintf(str, "\%d", i);
 opengl_draw_triangle(tri_array[i], c, str);
 \}
 opengl_text_overlay(5, 15," [h] Show help");
```

    if(cfg_show_help) {
        opengl_text_overlay(5, 30,"[arrows] Zoom/Rotate around");
        opengl_text_overlay(5, 45,"[wasdqe] Move the blue triangle");
        opengl_text_overlay(5, 60,"[o] Show origin axis");
        opengl_text_overlay(5, 75,"[c] Show triangle coord");
        opengl_text_overlay(5, 90,"[i] Show triangle id");
    opengl_text_overlay(5, 105,"[t] Switch to special cases mode");
    opengl_text_overlay(5, 120,"[g] Switch between CPU and GPU");
    if(!cfg_special_cases){
    opengl_text_overlay(5, 135,"[+] Add a triangle");
    opengl_text_overlay(5, 150,"[-] Remove a triangle");
    opengl_text_overlay(5, 165,"[space] New random triangles");
        }
    }
    sprintf(str, "Computed by %s", cfg_use_cuda?"GPU using CUDA":"CPU");
    opengl_text_overlay(5, glutGet(GLUT_WINDOW_HEIGHT)-10, str);
    //force display
    glFlush();
    }

```
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

\section*{console.h}
```

/**

* \file console.h
* lauthor Romain Maffina
* Iversion 1.0
* \brief Console testbench for triangle-triangle collision tester.
*/
\#ifndef CONSOLE_H_
\#define CONSOLE_H_
\#include <stdint.h>
int start_benchmark(int argc, char** argv, uint32_t nb_triangles);
\#endif /* CONSOLE_H_ */

```

\section*{console.c}
```

/**
* \file console.c
* lauthor Romain Maffina
* \version 1.0
* \brief Console testbench for triangle-triangle collision tester.
*/
\#include <stdlib.h>
\#include <stdio.h>
\#include <string.h>
\#include "console.h"
\#include "test-tools.h"
\#include "geometric-tools.h"
\#include "detect-tri2tris-intersection.h"
void print_first_results(uint8_t results[], int size);
void print_last_results(uint8_t results[], int size);
void print_first_results(uint8_t results[], int size){
int i, count;
count=size<25?size:25;
printf("first results : ");
for(i=0;i<count;i++)
printf("%d ", results[i]);
printf("\n");
}
void print_last_results(uint8_t results[], int size){
int i, count;
count=size<25?size:25;
printf("last results : ");
for(i=count;i>0;i--)
printf("%d ", results[size-i]);
printf("\n");
}

```

39
0 int start_benchmark(int argc, char** argv, uint32_t nb_triangles) \{
uint8_t *tri_result_array_gpu \(=\) NULL
triangle_t *tri_mismatch_array = NULL;
uint8_t *tri_mismatch_result_array = NULL;
uint32_t nb_triangles_last = nb_triangles;
printf("Welcome to this CPU and GPU benchmark of a triangle-triangle collision tester. \(n\left(n^{\prime \prime}\right)\);
/* Generate random triangles and init result array */
printf("Generating \%d random triangles...", nb_triangles);
fflush(stdout);
if ((nb_triangles=tri_generator(nb_triangles))<0) \{
printf("\n\nERROR : Host memory allocation failed! \n")
return -1 ;
\}
if (nb_triangles_last==nb_triangles) printf(" done. \(\backslash n \backslash n \backslash n ")\);
else
printf(" only \%d triangles have been generated. \(\mathrm{n}_{\left.\mathrm{n} \backslash \mathrm{n} \backslash \mathrm{n} ", ~ n b _t r i a n g l e s\right) ; ~}^{\text {n }}\)
fflush(stdout);
tri_result_array_gpu = (uint8_t*)calloc(nb_triangles,sizeof(uint8_t));
/* Setting up configuration */
config_set (COMPUTE_ALL_INTERSECTION | VERBOSE_MODE);
/* Collisions computed with GPU */
printf("Computing collisions with GPU (CUDA)...");
chrono();
if(tri2tris_intersection_detect_gpu(ref, tri_array, nb_triangles, tri_result_array_gpu)
\(!=-1)\{\)
printf("computed in \%d ms. \(\ln\) ", chrono());
print_first_results(tri_result_array_gpu, nb_triangles);
print_last_results(tri_result_array_gpu, nb_triangles)
\}
else\{
chrono();
printf("failed! An error occured. \({ }^{\prime}\) n", chrono());
return -1 ;
\}
fflush(stdout);
printf("\n\n");
/* Collisions computed with CPU */
printf("Computing collisions with CPU...");
fflush(stdout);
chrono();
if(tri2tris_intersection_detect_cpu(ref, tri_array, nb_triangles, tri_result_array) !=
-1) \{
printf("computed in \%d ms. \({ }^{\text {n }}\) ", chrono());
print_first_results(tri_result_array, nb_triangles);
```

    print_last_results(tri_result_array, nb_triangles);
    }
else{
chrono();
printf("failed! An error occured.\n", chrono() );
return -1;
}
printf("\n\n");
fflush(stdout);
free_memory();
return 0;

```
108 \}```

[^0]: ${ }^{1}$ General-purpose computing on graphics processing units 6
 ${ }^{2}$ Graphics Processing Unit
 ${ }^{3}$ Central Processing Unit
 ${ }^{4}$ Compute Unified Device Architecture

[^1]: ${ }^{1}$ Note that the signed distances of the vertices of \mathcal{T}_{0} are never computed in thoses steps, it must a forgetting.

[^2]: ${ }^{2}$ The method of separating axes (Section 7.7) can be used to determine whether or not and intersection exists. Generally speaking, [...]

[^3]: * ©param p[] the triangle points

