
On a Markov Modulated Chain Exhibiting Self-Similarities Over

Finite Timescale

Stephan Robert Jean-Yves Le Boudec

University of California at Berkeley Swiss Federal Institute of Technology

EECS Department Laboratoire des r�eseaux de communication

Berkeley, CA 94720-1770, USA 1015 Lausanne, Switzerland

Abstract

Recent papers have pointed out that data tra�c exhibits self-similarity, but self-similarity is observed only on a

�nite timescale. In order to account for that, we introduce the concept of pseudo long-range dependences. In this

paper, we describe a Modulated Markov process producing self-similarity on a �nite timescale; the process is quite

easy to manipulate and depends only on three parameters (two real numbers and one integer). An advantage of

using it is that it is possible to re-use the well-known analytical queuing theory techniques developed in the past in

order to evaluate network performance. A quantitative method based on the decomposability theory of Courtois is

given to evaluate the domain of validity where the process exhibits pseudo long-range dependences. The validation

on a queuing problem is also discussed. Finally, we analyze the inputs of a statistical multiplexer in the context

of a project called Scalability Enhancements for Connection-Oriented Networks (SCONE).

1 Introduction

The aim of this study is to generate a source model re
ecting some properties of a real source and analyze its

impact on a multiplexer. Here, we want to model data networks. Recent work [1, 2] has pointed out that such

a tra�c exhibits self-similarities on a �nite timescale. In this introduction, we will try to understand intuitively

from where this speci�c behavior comes, because modeling is based on understanding what is essential [3]. If

we consider the measured Local Area Network (LAN) tra�c as a source, we must take into account that many

people are working on the network, having their own schedules. Human behavior has a big in
uence on the

network utilization but the inverse is true too: the patience of the human being is not unlimited. The in
uence



of the protocol used should be taken into consideration. Here we consider only data tra�c in a �rst step: voice,

sound and video tra�c is ignored in our model. In the following, we consider the measurements performed on

the Bellcore network (the �les are available via anonymous ftp from flash.bellcore.com, directory lan/pub).

The measured Bellcore tra�c is 99.5% Internet Protocol (IP). Data tra�c consists of a large variety of service

types (�le-transfers, workstations communications, terminal communications, ...). IP can support di�erent types

of protocols. If we consider TCP (Transmission Control Protocol)/IP protocol [4], it has a very speci�c behavior.

Manthorpe [5] studied the in
uence of the transport layer on tra�c modeling. This protocol uses a sliding window

to ensure the e�ciency of the transmission. The 
ow sent on the network depends on the window size but also on

the network load and size. Maybe the most complex aspect in TCP is embedded in the way it handles time-out

and retransmission. Every time it sends a segment, TCP starts a timer and waits for an acknowledgment. If

the timer expires before data in the segment has been acknowledged, TCP assumes that the segment was lost

or corrupted and retransmits it. TCP is intended for use in an internet environment. In such an environment,

a segment traveling between a pair of machines may traverse a single, low-delay network or it may wind across

multiple intermediate networks through multiple gateways. Thus it is impossible to know a priori how quickly

acknowledgments will return to the source. Furthermore, the delay at each gateway depends on the tra�c. TCP

monitors the performance of each connection and deduces values for time-outs and uses an adaptive retransmission

algorithm which allows it to adapt itself if the performance of the connection changes. Furthermore, TCP reacts

to congestion. When congestion occurs, TCP normally uses two techniques: slow start and multiplicative decrease

of the window size. Ethernet, when it has something to transmit, waits until the channel is free. Furthermore, it

is able to detect collisions on the network. In other words, if two workstations sense the channel to be idle and

begin to transmit simultaneously they will both detect the collision almost immediately. The two stations should

abruptly stop transmitting as soon as a collision is detected. Therefore, our model for Ethernet will consist of

alternating contention and transmission periods.

To resume, we roughly assume that LAN tra�c measured on Ethernet can be examined at three major levels

of behavior corresponding to a certain resolution of time:

� The connection level describes the human behavior. The connection duration is determined by the �le

sending time and the �le length. The duration between calls on an Ethernet network is typically in the time

range of 10 ... 1000 sec.

� The TCP/IP level describes the transport level. As we have seen before, the tra�c sent on the network

depends of an uncontrollable number of parameters but the major in
uences on it is the network behavior.

The time to transmit a TCP/IP packet and receive the corresponding acknowledgment typically varies from

0.001 to 10 sec.



� The Ethernet network level where the sent tra�c depends essentially on the local tra�c 
owing on the

network. The time between sending and not sending a frame is typically in the range 1 ... 50 msec.

At the human level, we consider two operational modes: sending or not sending a �le. The change between the

two modes depends uniquely on the human behavior and how he/she reacts when a congestion occurs in the

network. At the TCP/IP level, the protocol is principally controlled by the network behavior. As seen before,

the analysis of the jumps between the two states is di�cult because of the dependences between the protocol and

the network. At the lowest level, Ethernet waits for the channel before transmitting data. A Markov model has

been built on these considerations [6, 7]. It has been found that such a model exhibits self-similarities on a �nite

timescale.

The aim of this paper is to discuss some properties of the Markovian model we propose here and to consider

the statistical multiplexing of these sources. The paper is organized as follows. Section 2 introduces the concept

of pseudo long-range dependences and gives some useful de�nitions for the rest of the paper. The Markov model

(exhibiting self-similarities on a �nite timescale) we propose is introduced in Section 3. The validation on a

queuing problem with such a source is also discussed. The inputs of a statistical multiplexer are analyzed in

Section 4 (in the context of SCONE).

2 Pseudo Long-Range Dependences

Long-range dependent processes have been at the center of a debate quite recently. The aim of this Section is to

de�ne a new class of models, the pseudo long-range dependent models which are based on �nite Markov chains (it

is necessary to consider in�nite Markov chains to obtain truly long-range dependent processes). Let us give some

de�nitions, useful for following this text. We consider the process of cell arrivals on a slotted link; call Xt the

random variable representing the number of cells during the tth time slot, namely during time interval [t� 1; t).

Let X = (Xt : t = 0; 1; 2; 3; :::) be a covariance stationary stochastic process with an autocovariance function

CovfXt; Xt+�g andX
(m) = (Xm

k : k = 0; 1; 2; 3; :::) a new averaged series over non-overlapping blocks of sizem (m

is a time interval in our case) with an autocovariance function CovfX
(m)
t ; X

(m)
t+� g. X

(m)
k = 1

m

Pkm
t=km�m+1Xt and

let Nm be the number of arrivals during m timeslots. Mathematically [8], the di�erences between the short-range

dependent processes and the long-range dependent processes are reported in table 1. There is another category:

the processes of long-range dependences of index �, but they don't have a degenerate correlational structure as

m!1. All stationary autoregressive-moving average (ARMA) processes of �nite order, all �nite Markov chains

fall into the �rst category. In the second category, we have the fractional Brownian motion [9], ARIMA processes

[10], chaotic maps [11] which have long-range dependences. However if we look at this de�nition, we see that a

process having \long term dependences", but over a limited timescale is considered as a short term dependent



short-range long-range

P
1

�=0CovfXt; Xt+�g convergent divergent

spectrum at 0 �nite in�nite

V arfX(m)g

is for large m

asymptotically of

the form (0 < � < 1) 1=m m��

Table 1: Di�erences between the short-range dependent processes and the long-range dependent processes

process. We see for example that Ethernet measurements have long term dependences, at least over 4 or 5 orders

of magnitude. In other words, if we represent the number of Ethernet packets arriving in a time-interval of 1 s,

then the statistics of the number of packets looks the same for 10 s, 100 s, 1000 s, 10000 s. Researchers at Bellcore

have observed a stabilization of the index of dispersion [12] indicating a lack of self-similarity. According to the

de�nition, a short term dependences process would be su�cient to model LAN tra�c. The di�erence with other

processes (Poisson, ON-OFF, ...) is striking and they should be categorized di�erently. Therefore, we propose to

name them: pseudo long-range dependences processes. A pseudo long-range dependent process is able to model

as well as an (exactly) long-range dependent aggregated tra�c over several timescales. In fact, this de�nition of

long term dependences processes comes historically from the importance of self-similar processes which are able to

give an elegant explanation to an empirical law (Hurst e�ect). Because of the di�culty of tracting fractal-based

models, Anderson [13] and Robert [6, 7] proposed LAN tra�c with Markov chains having pseudo long-range

dependent modeling. In the next Section, we will give the characteristics of the used Markov model.

3 Markov model

Here, we investigate the use of a simple, discrete time Markov modulated model for representing self-similar

data tra�c. Xt is assumed to be 0 or 1 during the tth time slot, namely during time interval [t � 1; t). The

Markov modulated chain is assumed to be stationary and homogeneous. Let Yt = i be the modulator's state

i, i 2 1; 2; 3; :::; n at time t. The arrivals of cells are modulated by a n-state discrete time Markov chain with

transition probabilities aij(t1; t2) = Pr[Yt2 = jjYt1 = i]; aij(t; t + 1) = aij . Let �ij denote the probability

of having j cells given that the modulator's state is i which we assume independent of t. More speci�cally

�ij = Pr[X = jjY = i]. The Markov modulated chain state probabilities are noted as �i(t) = PrfYt = ig, i is

referred to as the modulator's state and t as the time. All the moments are equal and no longer time dependent.

EfXk
t g = EfXg = ~��~e; 8k = 1; 2; � � � ; 8t = 0; 1; 2; � � � (1)



with ~� = (�1; �2; :::; �n) and ~e the unity vector. � is de�ned as

� = diag(E[X jY = 1]; E[X jY = 2]; :::; E[X jY = n]) (2)

If Nm represents the number of arrivals in a window of m time intervals, the variance of Nm can be written

V arfNmg = mEfXg�m2(EfXg)2+

2(
Pm�1

i=1 (m� i)(~��Ai+1�~e))
(3)

Now, we propose a family of models

A =

0
BBBBBB@

1� 1=a� :::� 1=an�1 1=a � � � 1=an�1

b=a 1� b=a � � � 0

� � � � � � � � � � � �

(b=a)n�1 0 � � � 1� (b=a)n�1

1
CCCCCCA

(4)

and �11 = �20 = �30 = �40 = � � � = 1

� =

0
BBBBBBB@

1 0 � � � 0

0 0 � � � 0

� � � � � � � � � � � �

0 0 � � � 0

1
CCCCCCCA

(5)

So, the Markov chain has only 3 parameters: a, b and the number of states in the Markov chain n. The studied

Markov chain is �nite, irreducible, with recurrent states. There is a unique stationary distribution and the solution

to the system ~� = ~�A exists. The resolution of this system leads to �i = �1(1=b)
i�1 with i = 2; � � � ; n. On the

other hand,
Pn

i=1 �i = 1. Finally

�1 =
1� 1=b

1� (1=b)n
(6)

and E[X ] = �1 with the proposed Markov chain because of the particular form of �. The moments are all equal

E[X ] = E[X2] = E[X3] = � � � and the variance is equal to E[X2] � E2[X ]. Figure 1 shows us the evolution of

E[X ] as a function of b for di�erent values of n. Notice that for n = 1000, the E[X ] values are extremely low

for b < 1. When n ! 1, b � 1 8E[X ]. On the other hand, with a small number of states, b can have values

between 0 and 1 for \reasonable" E[X ]. Now, there is a problem because �1 = E[X ] is not determined for b = 1.

In applying l'Hospital rule, we �nd that for n � 2, �1 = E[X ] = 1=n when b = 1. The interarrival distribution

TA is the following, for k = 1

prob(TA = 1jYt = 1) = 1�

n�1X
i=1

(1=a)i

and for k � 2

prob(TA = kjYt = 1) =

n�1X
i=1

(b=a2)i(1� (b=a)i)k�2
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Figure 1: E[X ] as a function of b when n = 2=3=5=10=1000

this distribution is a sum of geometric distributions and has a large variability. The interarrival expected value

is [14]

E[TAjYt = 1] =
1� (1=b)n

1� 1=b
(7)

Notice that if n!1, b > 1. The second moment of TA is given by

E[T 2
AjYt = 1] = 1 +

1� (1=b)n

1� 1=b
+ 2

1� (a=b2)n

1� a=b2
(8)

If b > 1 and a=b2 < 1

E[T 2
AjYt = 1] = 1 +

1

1� 1=b
+ 2

1

1� a=b2
(9)

for n ! 1 but if b < 1 or a=b2 > 1, E[T 2
AjYt = 1] ! 1 when n ! 1. The burst length distribution TR is

geometric.

3.1 Domain where the process exhibits self-similarities

To build our model, we have considered a theory which was developed approximately 20 years ago by Courtois,

the theory of decomposability. Courtois's analysis [15] is based on the important observation that large computing

systems can usefully be regarded as nearly completely decomposable systems. Systems are arranged in a hierarchy

of components and subcomponents with strong interactions within components at the same level and lower

interactions with other components. Near decomposability has been observed in other domains than computing:

in economics, in biology, genetics, social sciences. The pioneers in this domain are Simon and Ando who studied



several study-cases in economics and in physics [16, 17, 18]. What they stated is that aggregation of variables

in a nearly decomposable system must separate the analysis of the short term and long term dynamics. They

proved two major theorems. The �rst says that a nearly-decomposable system can be analyzed by a completely

decomposable system if the intergroup dependences are su�ciently weak compared to intragroup ones. The

second theorem says that even in the long term, the results obtained in the short term will remain approximately

valid in the long term, as far as the relative behavior of the variables of the same group is concerned. In our

study, the problem is inverse: we postulate the LAN tra�c is composed of di�erent timescales. The Markov chain

we propose to analyze here is in fact decomposable at several levels. In a �rst step, the development is done for

only one level of decomposability. The presented development deviates from those of Simon, Ando and Courtois.

The Markov chain to be studied is characterized by its transition matrix A and its state probabilities ~�

(~�t+1 = ~�tA), A is nearly completely decomposable. Let A� be completely decomposable, then A� is composed

of squared submatrices placed on the diagonal:

A� =

0
BBBBBBB@

A�1 � � � 0 0

0 A�2 � � � 0

0 � � � � � � 0

0 0 � � � A�M

1
CCCCCCCA

(10)

The remaining elements are equal to zero. A�IJ is a sub-matrix of A at the intersection of the Ith set of rows

and the J th set of columns and aiJjJ the element at the intersection of the ith row and the jth column of AIJ .

To A� is associated a new ~��: ~��t+1 = ~��tA
�. For simpli�cation AII = Ai; i = 1; � � � ;M and is a square matrix

n(i) � n(i) with
PM

i=1 n(i) = n. Each submatrix of A�i has its own set of eigenvalues ��(iI). For convenience, we

suppose they are ordered: ��(1I) = 1 > ��(2I) � ::: � ��(n(I)I ); I = 1; :::;M . ��(1I) = 1 because the matrices

are stochastic [19]. With the matrix A, the situation is di�erent because only one eigenvalue (�(11)) is equal to

1. We suppose the eigenvalues are ordered as well. Suppose now A is diagonalizable, so

A = P�1DP (11)

P is the passage matrix and D can be written

D =
X
i

�iPi =

n(I)X
i=1

MX
I=1

�(iI)PI (i) (12)

with Pl = projector (i.e. pij = 0 8i; j 6= l, pll = 1). So

A = P�1P1(1)P+
PM

I=2 �(1I)P
�1PI(1)P+

PM
I=1

Pn(I)
i=2 �(iI)P

�1PI(i)P
(13)

�(iI)P
�1PI(i)P can be replaced by Z(iI)(zkl(iI) are the elements of Z(iI)). The properties of Z(iI ) are given in

[15].
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t , a = 6:7, b = 0:576, n = 5

Similarly for A�, we have

A� = P�1P1(1)P+
PM

I=2 �
�(1I)P

�1PI(1)P+

PM
I=1

Pn(I)
i=2 ��(iI)P

�1PI(i)P
(14)

Here we will give the �rst theorem of Simon and Ando [16] without demonstration:

Theorem 1 For an arbitrary positive number &, there exists a number �& such that for � � �& ,

max
k;l

jzkl(iI)� z�kl(iI)j < & (15)

with 2 � i � n(I); 1 � I �M; 1 � k; l � n

Let us now focus our attention on the implication of this theorem. The discussion is intuitive but very important

in this context. The time behavior of �t and the comparison with the time behavior of ��t is central to this concept.

Due to the eigenvalues' ordinance, the �rst terms of (14) will not imply a big variation in the short term (t < T1),

because the �(1I) I = 1; :::;M are close to unity. Thus, for t < T1, the predominantly varying term of A is the

last one, so �t and ��t evolve similarly. For T1 < t < T2, the time behaviors of �t and ��t are de�ned by the last

terms of A and A� respectively, a similar equilibrium is being reached within each subsystem of A and A�. For

T2 < t < T3, the most signi�cantly varying term of A is the second one. For t > T3, the �rst term of A dominates

all the others. A global equilibrium is attained in the whole system. The whole nearly completely decomposable

system moves towards equilibrium, but the short-term equilibrium relative system moves towards equilibrium; the

short-term equilibrium relative values of the variables within each subsystem are approximately maintained. This

dynamic behavior of a nearly decomposable matrix may be dissociated into four distinct periods that Simon and

Ando [16] call, respectively, 1) short-term dynamics, t < T1 2) short-term equilibrium, T1 < t < T2 3) long-term

dynamics, T2 < t < T3 and 4) long-term equilibrium, t > T3. Here, we want to analyze matrices nearly completely

decomposable with the form described in Section 3. A� is built based on the Courtois's theory, with b=a < 1.
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A
� =

0
BBBBBB@

1� 1=a� ::: � 1=an�2 1=a � � � 0

b=a 1� b=a � � � 0

� � � � � � � � � � � �

0 0 � � � 1

1
CCCCCCA

(16)

Here, we have only two submatrices placed on the diagonal, A�1 and A
�

2. A
�

1 is a square matrix (n� 1) � (n� 1)

and A�2 a square matrix 1 � 1. In this case, n(1) = n� 1 and n(2) = 1, n(1) + n(2) = n, M = 2. Note that b < a

and that A� is a non-ergodic matrix. The time behavior of �t and �
�

t are given in Figure 2 and the variance-time

plot of these two Markov chains is given in Figure 3. By de�nition [20], a process having only one Hurst parameter

H to describe it is called exactly second-order self-similar. The process Xt and the averaged processes X
(m)
t have

identical correlational structures. With the Markov chains we will analyze, we are not exactly in this case because

all �nite Markov chains have a limit. Therefore, we propose to use the name of \local" Hurst Hl parameter instead

of Hurst parameter for our Markov chains. The Markov chains we examine have pseudo long-range dependences.

The self-similarity tests performed on these chains (by the variances method and the visual test) and the �tting

problem can be found in [21].

3.2 Validation on a queuing problem

Here, we consider an ATM link bu�er; the process of cell arrivals on a slotted link. The service time is equal to

one slot and can only start at the beginning of a slot. No priority level is considered here and the service strategy

of the queue is First In First Out (FIFO). The bu�er has a capacity of c cells. If cells arrive when the bu�er is

full, they will be discarded. We assume here that the output link is slower than the input one. The arrival of

cells is modulated by the n-state Markov chain described previously. The time unit is one slot, therefore, at the
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input of the queue we have to de�ne the minislot concept: the time spent between the begin of the arrival of the

�rst minislot and the begin of the arrival of the Kth one is equal to one time unit. The rate ratio between the

input and the output link is equal to K. In the next paragraph, we describe how to obtain the distribution of

the random variable X(K)t as a function of K.

Here, we want to calculate the distribution of the random variableX(K)t as a function of K. This distribution

can be calculated by a recurrence formula. Let K be the number of slots and k the number of \1"s during l

minislots and let i be the modulator's state. Then we observe the instants K;K +1;K +2; � � �. Let Dl
k(i) be the

distribution of cell arrivals between two instants (K and 2�K for example) when the modulator is in state i at

the beginning of the slot (K here). The recurrence formula is given by

Dl+1
k (i) = Pr[Xt = 1jYt = i]

Pn
j=1 aijD

l
k�1(j)+

(1� Pr[Xt = 1jYt = i])
Pn

j=1 aijD
l
k(j)

(17)

The initial conditions are given by

D1
k(i) =

8>>>><
>>>>:

k = 0 1� Pr[Xt = 1jYt = i]

k = 1 Pr[Xt = 1jYt = i]

k � 1 0

(18)

The transition matrix, when we observe the instants K; 2�K; 3�K; ::: is given by AK . The transition matrix

of the queue Q is upper-block Hessenberg. The loss probability can be calculated by the MBH algorithm [22].

Figure 4 shows us the evolution of the Cell Loss Ratio (CLR) as a function of the queue's utilization (K:EfXg)

for di�erent Markov chains. Here, EfXg = 0:05 and the queue's length is 500. The 5-state chain has a local

Hurst parameter Hl = 0:8 (a = 6:7, b = 0:5764). With the 2-state Markov chain, we have tried to �nd a common

point with the 5-state Markov chain. If the utilization = 0.1, CLR values of the two sources are equal but their
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Figure 6: Comparison of the queuing behavior with a 5-state Markov chain and Bellcore measurements

evolution is completely di�erent with higher utilization. Increasing the a parameter of the 2-state Markov chain

is not a good solution because the evolution remains the same. We observe only a shift of the curve. On the

same Figure, the evolution of a Poissonian source is given. The local Hurst parameter has a big in
uence on

the queuing behavior. Here, we have considered a 5-state Markov chain in varying the local Hurst parameter Hl

but we must not forget that the domain of validity where the process exhibits self-similarities increases with Hl.

Figure 5 shows us the in
uence of the local Hurst parameter on the queue's behavior. Now, it is quite important

to know how a queue reacts to measured tra�c in order to know if the sources we have considered are realistic or

not. To verify that, we have taken a Bellcore �le (pAug.TL), discretized it and put the resulting tra�c in a queue

having a constant service time. The �le contains 1 million packets (the length of one packet varies from 2 to 29

cells). Figure 6 shows us the comparison. The two curves are close together, which indicates a good behavior of

the proposed source versus utilization.
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4 SCONE

In this Section, we are interested on statistical multiplexing it is possible to obtain with a superposition of

Markovian sources having pseudo long-range dependences. The aim is to know if it is possible or not to earn

statistical multiplexing in spite of the di�erent behavior the sources could have [23]. This subject is discussed

[24, 25] because one has to know how ATM has to be displayed. The context in which the multiplexing problem

is studied is SCONE. SCONE proposes a new architecture for the ATM networks. The aim of it is to reduce the

computing costs per connection or 
ow in multimedia networks. This cost is associated with the processing time

and the storage of informations. The proposed solution with SCONE is to bundle connections in the same transit

network, in other words, in using dynamic connections (virtual paths) between ATM access nodes. Characteristics

of SCONE about the basic idea are reported in [26]. In [27], a proposition concerning the signaling is presented. It

concerns ATM networks which have to support simultaneously the setup of a Virtual Channel Connection (VCC)

and a Virtual Path (VP). In [28], the tra�c control in SCONE is presented. In SCONE, the concept of Virtual

Path Trunk (VPT) is introduced. A VPT is a path connection established by the network in order to reduce the

awareness of the connection at the transit nodes. VCCs are established on VPTs. VCC connections are Variable

Bit Rate (VBR). VPT connections are Constant Bit Rate (CBR), Available Bit Rate (ABR) or Unspeci�ed Bit

Rate (UBR). We will only consider the CBR and VBR classes. CBR is a particular case of VBR where the

connection parameter is simply given by the Peak Cell Rate (PCR). If VPT is CBR, it is not possible to have

statistical multiplexing between VPTs. SCONE gives the possibility of carrying non-CBR tra�c. Here, we will

study the VCC connections with self-similar tra�c on a �nite timescale. Figure 8 shows us a description of the

situation. N identical connections, VBR, having the same connection attributes enter in the multiplexer made



up with a bu�er and a server. The time is discrete; its basic unit is the ATM cell. The bu�er length is Xbuffer.

The VPT connection is VBR and the server serves cells conforming to GCRA(1=T0, �0) and GCRA(R0, CDV0).

4.1 Multiplexer input

In this Subsection, we want to model the Generic Cell Rate Algorithm (GCRA). At the multiplexer input, N

VCC connections must be conform to the GCRA parameters. For a given set of parameters, we have to adjust

the GCRA parameters in order to have a cell loss ratio less than a given value. To begin, let us recall the GCRA

role. ATM Forum [29] and ITU [30] have speci�ed a mechanism for the User Network Interface (UNI) which

controls the tra�c 
owing through a VCC connection. This mechanism is the GCRA: it de�nes a relationship

between the PCR and the Cell Delay Variation (CDV) and a relation between the Sustained Cell Rate (SCR) and

the Burst Tolerance (BT). GCRA depends on two parameters, its increment (T ) and its limit (�). This algorithm

de�nes a Theoretical Arrival Time (TAT) which is the \nominal" arrival time of the cell [31]. If the arrival time is

not less than TAT � � , then the cell is conformed and the algorithm updates the TAT value to max(t; TAT )+ � ,

otherwise, the cell is not conform. The equations of the GCRA counter are the same as the un�nished work in a

G/D/1/c queue. The behavior of the GCRA is the same as a queue concerning the rejection of cells if we assume

the same maximum rate at the input and at the output of the GCRA. However, one big di�erence between the

two mechanisms is that the GCRA does not modify the tra�c shape but the queue does. Here we examine only

the rejection or marking of cells. The occupancy of the queue is equal to (un�nished work/D) with D being the

service time. Cells are eliminated if the queue is full, if (un�nished work/D) exceeds the queue length. With the

GCRA, the cells are marked if the counter goes beyond a certain limit. The equations of the GCRA counter and

the equations of the queue's un�nished work are the same. The GCRA limit=(queue's length.D) for su�ciently

long queues (3.3% error for a queue having 30 positions).

ATM-Forum permits CBR or VBR tra�c transmission on a VCC connection. For the CBR connections, the

user doesn't declare a SCR but only a PCR. In other words, the cells must be conform to GCRA(1=T , CDV )

with small CDV . For the VBR tra�c, the source has to declare PCRV CC = R, SCRV CC = 1=T , BT = �

and CDV . In other words, arriving cells have to be conform to two consecutive GCRAs, GCRA(R;CDV ) and

GCRA(1=T; �). The advantage of using VBR connections is that it is possible to send back-to-back cells on the

connection during a time interval depending on the BT value. One should know that the mechanism is more

complex. We have seen that the GCRA could be replaced by a queue. In this Subsection, we want to examine

the loss probability in the GCRA as a function of given parameters with a given source (5-state Markov chain

with di�erent local Hurst parameters). Figures 9, 10 and 11 show us the value of � and SCR we have to declare

for loss probabilities from 10�6 to 10�10. Figure 12 shows us the in
uence of the CLR on � .
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Figure 9: � as a function of 1=T = SCRV CC for di�erent values of the local Hurst parameter, CLR= 10�10
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Figure 10: � as a function of 1=T = SCRV CC for di�erent values of the local Hurst parameter, CLR= 10�8
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Figure 11: � as a function of 1=T = SCRV CC for di�erent values of the local Hurst parameter, CLR= 10�6
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Figure 12: BT as a function of 1=T = SCRV CC for di�erent values of CLR, CLR = 10�6 to 10�10

5 Conclusions

In this paper, we have described a Markov chain producing self-similarity on a �nite timescale which is quite easy

to manipulate and depends only on three parameters. The validation on a queuing problem is also discussed. We

think the theory of decomposability provides a fundamental explanation of the observed self-similarity on data

networks. Furthermore, to consider only one relation between correlations over timescales seems to be unrealistic.

It is surely necessary to take into account \local" self-similarities. With this kind of sources, we analyzed the

inputs of a multiplexer in the context of SCONE.
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