
Bachelor’s Degree Thesis

A New Completely Decentralized
Communication System Over IP

Nicholas Helke

August 4, 2013

Prof. Stephan Robert
HEIG-VD

Nicholas Helke

Abstract

The Internet Protocol (IP) was designed to be resilient to topology changes. It should
therefore be possible to build a resilient communication system on top of IP, in fact
consumer communication systems deployed today all rely to some extend on central
servers. This makes these communication systems vulnerable should the central servers
become unreachable for any reason.

This memoir proposes a strategy for new communication system over IP that is com-
pletely decentralized, i.e. that doesn’t rely on central servers at all. This strategy uses
the BitTorrent network’s Distributed Hash Table (DHT) (which is based on Kademlia)
to map users to IP addresses in a completely decentralized manner. An application net-
work protocol and a proof of concept software application which implement the pro-
posed strategy are also discussed in this memoir.

V2 i

ii

Nicholas Helke

Terms of reference

The purpose of the bachelor’s degree project of which this memoir is the report is to
produce a new completely decentralized communication system over Internet Protocol
(IP).

The key words in [3] are to be interpreted in the context of this chapter as they are
defined in said document.

The development of this new system is divided into two parts:

1. A theoretical strategy for establishing a communication over IP in a completely
decentralized manner. This strategy must meet the following requirements:

a) The strategy must enable a conforming implementation to establish a point-
to-point connection over IP between two nodes with public Internet Protocol
Version 4 (IPv4) addresses where the user need only know the public key of
participating node he wishes to contact.

b) The strategy can not rely on a central server to establish a mapping from pub-
lic keys to IPv4 address, i.e. the strategy must be “pure” Peer-to-Peer (P2P)
according to Definition 2 of [29]

c) A central seeding server or list of servers may be used to seed fresh instal-
lations of a conforming implementation with the necessary information to
join the system. Once a fresh node has been seeded however, it must be able
to continue to function without ever relying on the seeding server or servers
again.

d) The strategy must be resilient in the face of network splits, i.e. communica-
tion must remain possible within the each subnets after the split.

e) The strategy must enable an established connection to transport arbitrary
data (e.g. text, voice, video or files) in both directions between the nodes.

f) The strategy may employ a variety of other strategies in order to extend the
applicability of this strategy to nodes behind firewalls and/or Network Ad-
dress Translation (NAT).

2. A practical implementation of the above strategy in the form of a proof of concept
software application and associated application network protocol. This proof of
concept application and network application protocol must meet the following
requirements:

a) The network application protocol must be architecture, platform and lan-
guage agnostic.

V2 iii

b) The network application protocol must allow for text communication and
must be extendible to support arbitrary forms of communication (e.g. voice,
video or files). This may be achieved by building feature negotiation into the
protocol.

c) The proof of concept application must support Linux and may use any Graph-
ical User Interface (GUI) available on the platforms it supports.

iv

Nicholas Helke

Contents

1. Introduction 1

2. Existing works 3
2.1. Bitmessage . 3
2.2. Completely decentralised DNS . 4

2.2.1. Dot-P2P . 4
2.2.2. Namecoin . 5

3. Challenges of Completely Decentralised Communication 7
3.1. Finding Peers in a Completely Decentralised Manner 7

3.1.1. Decentralised data storage . 7
3.1.2. BitTorrent’s Mainline DHT . 9
3.1.3. Kademlia . 10

3.2. Establishing the connection . 14
3.3. Security . 16

3.3.1. Obfuscation . 16
3.3.2. Handshake . 18
3.3.3. Encryption . 19
3.3.4. Web of Trust . 19

3.4. Ensuring resilience to topology changes 20

4. Implementation 23
4.1. Designing the program’s architecture and choosing a programming lan-

guage . 23
4.2. Reference implementation’s application architecture 26
4.3. Finding peers . 27
4.4. Establishing a connection . 31

4.4.1. Using SSDP and UPnP to create port mappings in compatible routers 31
4.4.2. On not implementing PCP née NAT-PMP 39
4.4.3. Confronting our hypotheses with reality 39

4.5. Security . 41
4.5.1. Public Key Infrastructure . 41
4.5.2. Adapting the handshake to symmetric NAT initiators 41

4.6. Communication protocol . 42
4.6.1. Basic protocol . 42
4.6.2. Extending the protocol . 43

V2 v

Contents

5. Conclusion 47

Bibliography 49

Acronyms 53

Appendices

A. Dictator Breaker User Manual A1
A.1. How to run . A1
A.2. Command line flags . A1

B. Dictator Breaker Code B1
B.1. go.nhelke.com/dictator-breaker/main.go B1
B.2. go.nhelke.com/dictator-breaker/ws.go B7
B.3. go.nhelke.com/dictator-breaker/messaging/message.go B9
B.4. go.nhelke.com/dictator-breaker/messaging/message_test.go B10
B.5. go.nhelke.com/dictator-breaker/security/openpgp.go B10
B.6. go.nhelke.com/dictator-breaker/security/openpgp_test.go B14
B.7. go.nhelke.com/dictator-breaker/views/chat.html B15
B.8. Known issues . B17

C. GoUPNPc C1
C.1. github.com/nhelke/goupnpc/README.mdown C1
C.2. github.com/nhelke/goupnpc/cmd.go . C2
C.3. github.com/nhelke/goupnpc/goupnp/goupnp.go C3
C.4. github.com/nhelke/goupnpc/goupnp/goupnp_test.go C9
C.5. github.com/nhelke/goupnpc/goupnp/backend.go C10
C.6. github.com/nhelke/goupnpc/goupnp/backend_test.go C14
C.7. github.com/nhelke/goupnpc/goupnp/ssdp.go C15
C.8. github.com/nhelke/goupnpc/goupnp/ssdp_test.go C19
C.9. Known issues . C21

D. Patches submitted to open source projects D1
D.1. Patch submitted to github.com/nictuku/dht D1
D.2. Patch submitted to github.com/monnand/dhkx D5

E. GNU General Public License Version 2 E1

vi

Nicholas Helke

1. Introduction

It was the Arab Spring that first alerted me to the need for a completely decentralized
communication system1. The falling dictatorships desperately attempted to thwart the
revolutions by cutting and disrupting internet communication[8]. The internet was de-
signed to be and is resistant to topology changes, however the countries of the Arab
Spring had a limited number of backbone connections to the outside world, which were
all under government control. The failing governments cut themselves off from the rest
of the world by destroying the routing tables of the edge routers. This was surprisingly
effective at disrupting communications.

The number of people relying on American and European based services had been
underestimated, or at least there was no widely known data about the penetration of
such services. It turns out Facebook, Gmail, Skype and Twitter where the principal
tools of communication for the revolutionaries and so when they were cut off from the
rest of the world they were no longer able to communicate internally because they were
relying on server-based services based outside their isolated subnet. Despite still be-
ing physically connected to one another, they where unable to communicate as they no
longer had access to the central server.

A worrying trend amongst all countries developing and developed alike are increas-
ing violations of civil liberties such as [12]. A decentralised communication therefore
would also provides some protection against unlawful surveillance although this is
more debatable given the governments increased regulation and control of Internet Ser-
vice Providers (ISPs).

This brought to light the necessity for a completely decentralized communication sys-
tem over Internet Protocol (IP), one that would be as resilient as IP is itself. It should also
be mentioned that such a system would also be beneficial to users on accidental topol-
ogy changes, such as the recent failure of SEA-ME-WE 4 due to criminal sabotage[1, 2]
or cases of accidental failure.

Some effort has gone into structuring this memoir for linear reading. It has not how-
ever been possible to eliminate forward-references completely. In order to fully grasp
some of the short comings of the solutions in chapter 2 an understanding of some no-
tions of the theory from chapter 3 can be helpful. This forward-reference can be avoided
by skipping chapter 2 entirely. It is of no consequence to the comprehension of the solu-
tion proposed by this memoir, it serves principally to show an alternative decentralized
communication system.

Other P2P solutions of all sorts are explored in chapter 2. In particular, Bitmessage[31],
a project with similar intend, is described, analysed and its shortcomings, which prevent

1Completely decentralized is to be understood as a “pure” Peer-to-Peer (P2P) system as in Definition 2 of
[29].

V2 1

1. Introduction

it from meeting the terms of reference of this memoir (cf. page iii), are exposed.
Chapter 3 covers the challenges of such a communication system. Lessons from past

attempts are drawn and the various solutions envisaged in this memoir are described
and evaluated.

Chapter 4 describes the process through which a proof of concept application, which
is part of the author’s bachelors degree, was developed and the protocol which was
developed along side it and which others are welcome to use.

2

Nicholas Helke

2. Existing works

Before embarking on this project I scoured the internet for similar and not-so-much-
similar-but-related projects. After sifting through the countless communication systems
that call themselves Peer-to-Peer (P2P), but that still rely on some central infrastructure
(“hybrid” P2P), I found the following couple of interesting related projects. Although
there are most certainly some that I am still unaware of.

2.1. Bitmessage

Bitmessage[31] is a proposal for an anonymous decentralized communication system,
first described in a white paper by Jonathan Warren in October 2012. Its abstract reads:

We propose a system that allows users to securely send and receive mes-
sages, and subscribe to broadcast messages, using a trustless decentralized
peer‐to‐peer protocol. Users need not exchange any data beyond a relatively
short (around 36 character) address to ensure security and they need not
have any concept of public or private keys to use the system. It is also de-
signed to mask non‐content data, like the sender and receiver of messages,
from those not involved in the communication.

With the exception of the last sentence, the above abstract would aptly describe the
proof of concept application described in chapter 4. The two solutions are, however,
very different.

Bitmessage is limited by design to non-real-time communication, so is more akin to
e-mail—and perhaps a slight regression over push e-mail. This alone makes it incom-
patible with the terms of reference of this project.

Bitmessage1 is very heavily inspired by Bitcoin[23]. Messages are sent to all the users
of the system on a best effort basis, this is necessary for the solution to provide anonymity
to both the sender and receiver of messages. In order to protect the system from flood-
ing, which would be catastrophic as all messages must go to all users, proof-of-work
must be appended to messages.

Sending messages to all users also serves as the strategy whereby peers find one an-
other. Essentially peers do not find one another, instead they are relatively confident
their message will reach its destination as all messages go to everyone. This is clearly
not an efficient strategy and one which is more akin to the Gnutella generation (cf. sec-
tion 3.1 for an explanation of Gnutella’s part in P2P systems) of linear complexity flood-
ing protocols of P2P systems than the more recent logarithmic P2P protocols.

This strategy of flooding everyone does however provide plausible deniability. As all
messages are encrypted using public key cryptography it cannot be surmised from the

V2 3

2. Existing works

message contents alone who the indented recipient is. Given that each message is sent
to everyone, determining the recipient by tracking the Internet Protocol (IP) address the
message goes to is not possible.

The proof-of-work, which protects the network from flooding, is to take about four
minutes on standard hardware. It this proof-of-work also is an effective way of combat-
ing spam. Each message requires this four-minute proof-of-work, for the average user
this has only a marginal cost in the form of energy costs and slight delay of four minutes
in message delivery. Spammers would have to spend those four minutes on each mes-
sage as the proof-of-work is applied to messages after they have been encrypted with
the public key of their respective recipients.

Bitmessage is not a competitor to this paper. It presents an interesting alternative
approach, which trades real-time communication for anonymity, plausible deniability
and effective elimination of spam.

2.2. Completely decentralised DNS

The major challenge to completely decentralized communication is the mapping of users
via some identifier to IP addresses. The Domain Name System (DNS) is certainly the
most widely deployed and used system for mapping identifiers, in this case fully quali-
fied domain names, to IP addresses. DNS is also a distributed system, it is not however
completely decentralized. In face it is organized in a tree, managed by Internet Corpora-
tion for Assigned Names and Numbers (ICANN). The DNS system is therefore subject
to the whims of ICANN. Fortunately ICANN takes its responsibility seriously and has
not yet censored a top-level domain.

Network Information Centres (NICs) on the other hand have been known to seize do-
mains. In 2010 the United States Department of Justice and Homeland Security started
to seize certain dot-com domain names without warning and without possible the pos-
sibility of appeal. This has prompted several attempts at creating truly decentralized
domain name systems.

2.2.1. Dot-P2P

It appears that the first serious attempt in this field, insofar as it was picked up by the
Electronic Frontier Foundation (EFF)1 was Dot-P2P.

Unfortunately aside from the EFF’s mention of it, there is not much I can say about it,
as in July 2013, when I was attempting to gather information about it, its website2 was
down, seemingly abandoned.

1https://www.eff.org/deeplinks/2010/12/constructive-direct-action-against-censorship
2http://dot-p2p.org/

4

https://www.eff.org/deeplinks/2010/12/constructive-direct-action-against-censorship
http://dot-p2p.org/

Nicholas Helke

2.2.2. Namecoin

A more recent attempt, and one which has the merit of still being active is Namecoin3.
Like Bitmessage (cf. section 2.1), Namecoin seems to be following a trend of reusing
concepts from Bitcoin[23]. In fact the only way to register a Namecoin domain is to ex-
change Bitcoins for Namecoins which serve as the currency within the Namecoin eco-
sphere. Unfortunately I fear its close tie to Bitcoin will ultimately prevent it from ever
going mainstream given how controversial Bitcoin is outside its niche. Although, who
knows, that may change.

3http://dot-bit.org/Main_Page

V2 5

http://dot-bit.org/Main_Page

2. Existing works

6

Nicholas Helke

3. Challenges of Completely Decentralised
Communication

The use of central servers is inherently vulnerable as a central server’s role is to be a
known location where information can be fetched or stored. That makes it also a known
location which can be blocked, attacked or otherwise disabled. In completely decen-
tralised communication Alice must be able to contact Bob without resorting to the use
of a central directory server or list of servers.

In section 3.1 the challenge of finding other peers without using a central directory
server is explored.

It is not sufficient to find the peer you wish to talk to, one must also be able to establish
a connection with that peer. Unfortunately most internet devices are behind firewalls
and/or Network Address Translation (NAT) which are designed to enable devices to
reach servers but often completely block connection attempts initiated from devices on
the WAN. Section 3.2 discusses the challenges and possible work-around solutions for
to the problem of actually establishing a connection to Bob.

Security concerns and possible approaches to address them are the subject of sec-
tion 3.3.

Any solution to the prior challenges, is not worth retaining as a solution to completely
decentralised communication if it is as vulnerable to topology changes as server-based
communication solutions. The whole point of completely decentralised communica-
tion is to approach the resilience of plain old Internet Protocol (IP) as much as possible.
Section 3.4 discusses the resilience of the discussed solutions.

3.1. Finding Peers in a Completely Decentralised Manner

Alice wishes to know how to reach Bob. She cannot use a phone book. She is only
allowed to contact random people who may or may not know Bob but who can help her
by suggesting other people more likely to know Bob. This in essence is the challenge to
finding peers in a completely decentralised manner or a so-called “pure” Peer-to-Peer
(P2P) system.

3.1.1. Decentralised data storage

Distributing data over many hosts, a practice known as sharding in the database world,
is quite common for large databases. The practice has also been around for some time
and is quite well understood. It is however very different and becomes a much harder
problem when one does not control the hosts that are to collaborate.

V2 7

3. Challenges of Completely Decentralised Communication

The problem of finding information in a decentralized manner over a collaborating
but not centrally controlled set of hosts has been the result of quite some interest ever
since the original Napster’s collapse. Napster served to illustrate the great power and
scalability of P2P systems. It relied however on central servers for indexing the content
available within the network. Rüdiger Schollmeier defines such systems as “hybrid”
P2P networks in [29]. Napster’s collapse revealed a weakness in “hybrid” P2P networks,
which rely on central servers to some degree, and led to a series of breakthroughs in P2P
data storage.

The first reaction wasn’t a breakthrough by any means and it is mentioned here only
for historic accuracy. Following Napster’s demise the first networks to be born from
the ashes did away with central servers by using request flooding. Request flooding can
hardly be called a strategy, it consists of contacting every peer you have ever known,
on the off chance that they are still online and that they have the information you are
looking for. Gnutella was perhaps the most popular such system and arguably its only
contribution to the field of P2P data storage and retrieval was a study by Saroiu et al
of probable future uptime as a function of past observed uptime [28]. The results of
this study informed the replication parameters used later in Kademlia[21], the solution
ultimately settled on for this project.

A far more interesting development and one that can be called a breakthrough was the
development of a range of new Distributed Hash Tables (DHTs). CAN[25], Chord[30],
Pastry[27] and Tapestry[34], to name just four. Kademlia also belongs to this set of DHTs,
however chronologically it came a couple of years after the aforementioned DHTs and
included new features which presented some significant advantages for use cases such
as BitTorrent or Emule’s DHTs. In particular:

1. It requires less network traffic than the previously mentioned DHTs in order to
converge on the requested data.

2. It also dynamically adjusts to load, caching hotspots upstream on the various con-
vergence paths, thereby distributing the load and protecting the random authori-
tative host(s) from suffering a Distributed Denial of Service (DDoS).

All these solutions have in common the following basic strategy which is still in force
today, when developing DHTs:

1. Participating nodes are uniformly spread over some address space. This address
space is usually the 160-bit address space and forms what is known as the overlay
network.

2. Information is spread over the same address space as the nodes usually by using
a hashing function and in particular SHA1, hence the 160-but address space.

3. A function is defined that maps data in the address space to the nearest node or
k nodes in the address space, where k is known as the replication factor. This is
commonly known as the distance metric.

8

Nicholas Helke

4. An algorithm is supplied that given the previous points converges as quickly as
possible on the requested data.

The perennity of data in the DHT is dependent on the storage strategy, in particular
how it replicates data, and on a sufficient number of nodes remaining online at all times
in order for the replication to have a chance succeed. Additionally in a “pure” P2P DHT
the number of online hosts must be large enough to ensure that it is highly probable
that one of the hosts last known is still online and connected to the rest of the overlay
network, as this is the only way that we can rejoin the network while staying true to
“pure” P2P. We speak of a critical mass. This is of paramount importance for a system
relying solely on a “pure” P2P DHT to be itself perennial.

3.1.2. BitTorrent’s Mainline DHT

By far the most widely deployed and used DHT is BitTorrent’s so-called Mainline DHT.
Because of this, it is the most perennial DHT currently in use. It is the Mainline DHT’s
popularity and therefore perennity which led the communication system described in
this memoir to choose this as a backing DHT thereby ensuring immediate critical-mass.
Section 4.3 explains how piggy-backing on the actual Mainline DHT designed for and
used by BitTorrent clients for tracking other BitTorrent peers is possible and achieved.

It should be noted that choosing based on popularity for the sake of perennity does
not necessarily come at the cost of technical inferiority. It is likely that technical criteria
dictated the popularity of the given DHT in the first place. It may come at the cost of
the latest and greatest developments in the field, as a popular solution has taken time
to become popular and once popular cannot as easily be changed.

In fact, in the specific case of the BitTorrent network’s Mainline DHT which chose
Kademlia, there are few subsequent DHTs that are technically superior. The principal
drawback of Kademlia is its vulnerability to Sybil-attacks, a vulnerability that subse-
quent DHT designs have attempted to address.

Sybil-attacks are attacks where a large number of malicious peers join a network in
order to have a sufficient mass to cause damage or otherwise disrupt service. It used
not to be economically viable to perform Sybil attacks, however illegal botnets and legal
virtual private servers for hire by the hour make this a far more feasible endeavour. In
fact it is rumoured that the big movie studios and record labels hire companies to infest
the Mainline DHT with peers that return bad results and/or that log users trying to
obtain certain Torrents, data which they later use to report users to the authorities.

A little anecdote about subsequent DHTs and why the final choice for this project re-
mained Kademlia. Petar Maymounkov, one of Kademlia’s authors, has since developed
Tonika1 based on the theory in [16], however it is no longer maintained and is not known
to be used in any widely distributed solution, so was discarded (despite the reference
implementation being in Go, the language chosen in section 4.1).

Another prominent subsequent Sybil-proof DHT is Whānau, developed by Chris Lesniewski-
Laas and M. Frans Kaashoek in [18]. It boasts strong protection to Sybil-attacks, up to

1https://pdos.csail.mit.edu/~petar/5ttt.org/

V2 9

https://pdos.csail.mit.edu/~petar/5ttt.org/

3. Challenges of Completely Decentralised Communication

O(n
logn) attack edges.2 Despite having been tested Whānau on PlanetLab3, which a chat

application no-less, it remains a theoretical exercise for the time being as no widely dis-
tributed solution has picked up on it. A shame given that Whānau even boasts constant-
time O(1) lookups!

Neither of these promising projects therefore has reached the critical mass needed for
it to be of interest to this project.

This is a good opportunity to remind ourselves that ultimately we must produce a
usable completely distributed messaging system. This is probably the area where this
goal has had the strongest influence in essentially determining the chosen technology,
i.e. Kademlia. It is more important that from the get go the solution work and that
it work with the inevitable large fluctuations of users in its beginnings. There would
be little point in choosing a solution which addresses Kademlia’s shortcomings if that
solution would then not be sustainable with the inevitably few early-adopters, even if
theoretically down the line, with more users, it would work.

In spite of its vulnerability to some distributed attacks Kademlia is quite ingenious.
It has already been mentioned that Kademlia has some features not supported by the
other mentioned DHTs, and it is easy, in light of these features and the unavailability of
the mentioned subsequent works, to understand Andrew Loewenstern’s choice for the
Mainline DHT in [19].

3.1.3. Kademlia

In order to understand how Kademlia works and how it succeeds in being so efficient,
we must first go over the strategic points that all DHTs define:

1. Kademlia uses random 160-bit identifiers which ideally should be completely ran-
dom in order to ensure uniform distribution, in practive they are pseudo-randomly
generated based on the current time, in order to obtain reasonable uniform distri-
bution, and on the machine’s MAC address, in order to ensure uniqueness.

2. Data in Kademlia is traditionally spread over the overlay network address space
using the SHA1 of the data itself. In the specific case of BitTorrent’s Mainline DHT,
it turns out that all torrents have a so called infohash which represents the data in
the torrent and is in actual fact the SHA1 of the torrent’s data, leading to a trivial
association from any given torrent to the overlay network address space.

3. The bit-wise exclusive-or (XOR) of 160-bit addresses is used as the distance metric
for Kademlia. It is this breakthrough choice that enables the additional features
that Kademlia provides, as we will soon see.

4. Finally, the convergence algorithm Kademlia uses has logarithmic time-complexity
O(logn) and converges along a constant path, a fact which comes from the prop-

2Attack edges are those edges in the overlay network graph, which connect bad and/or malicious nodes,
with the sub-graph of good nodes.

3https://www.planet-lab.org/

10

https://www.planet-lab.org/

Nicholas Helke

erties of the XOR distance metric and which enables the caching of data upstream
from the authoritative nodes, thereby distributing the load and preventing DDoS

Let us first note that bit-wise XOR is a valid distance metric:

d(x, y) = x⊕ y (3.1)
d(x, x) = 0 (3.2)

d(x, y) > 0 ⇔ x ̸= y (3.3)
d(x, y) = d(y, x) ∀x, y (3.4)

which also respects the triangle inequality:

d(x, y) + d(y, z) ≥ d(x, y)⊕ d(y, z) (3.5)
∧ d(x, y)⊕ d(y, z) = d(x, z) (3.6)
⇒ d(x, y) + d(y, z) ≥ d(x, z) (3.7)

Of more interest to us however is the following property, which makes Kademlia scale
very well. Given x, a node, and δ, a distance, there exists only one node, y, such that:

d(x, y) = δ (3.8)

Chord and the seminal Kademlia paper call this property being unidirectional. This prop-
erty combined with Kademlia’s routing algorithm means that any given node tends to
converge on requested nodes along different but constant paths. This means that nodes
closer to the querying node along the convergence path can cache the data thereby pro-
tecting the node closest to the requested information and therefore the authoritative
node from DDoS. In order to better see how this works, it is time to review how Kadem-
lia converges on peers.

Kademlia’s overlay network can be seen as a binary tree where each successive level
represents sucessisve bits of the nodes’ IDs. In keeping with reality not all IDs are used
and therefore we represent the tree stopping at unique prefixes. This also aids us in
fitting the tree on the page.

This tree is depicted in Figure 3.1. We note that in this binary tree the position of
highest order bit of the xor-distance which represents the length of the common prefix
between two nodes corresponds with how far up the tree one must go to reach the other
node.

Next we introduce an extremely important concept for Kademlia’s node-finding al-
gorithm. Each and every node in the Kademlia overlay network views and sub-divides
the complete tree differently. For the purposes of this example, we will consider a node
with unique prefix 0011 · · · . In figure 3.1 this node is marked in black and the sub-trees
0011 · · · divides the tree into are surrounded by grey ovals. We note that these sub-trees
correspond to nodes with prefixes differing in successive bits. Note also in descend-
ing the tree along the chosen node’s path, how each sub-tree is an order of magnitude
smaller than the previous one.

V2 11

3. Challenges of Completely Decentralised Communication

Space of 160−bit numbers

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

0

0

����� ¤����
	7¢��
����� � ¢ � ��� ¢w¡�� G¡����m¤
���
�ï���Ã¢P£����
�w ����
�! ��L ��
�"�#�½£�¢w � � � ��$ � �%�
�
���
�
'&�&(&
��� ��)�� G¡��!�m¤�*'¡
¢!�+�!,V¢-�`�R���
�! ��.½�ã G¡����V� ��� /� � £0� � �)�)� �
�
�
1&(&2& �3.ã�G
�½¢!,4�,¢]£5� � G¢w£f f¤

1

2

3

4

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11 Space of 160−bit numbers

����� ¤06%�87'�[£f¢V ���
� ¢ � �%�
���%� � ¯�:92;1¤8<=�&¡��� ��
� � �%�
�> � (�@?ã¡���ACB ���

 A � �ã�� ��
�
� �)�)�D � ��E?ã¡���A�B

�
 � �%�Ú��.ã£N£5�&�¯� � ,4�!���+���I¢w¡ �C���
� ��$�¢ � �GF).
�I¡�� ���
� £H�#�m�(�I¡á¢ � �
£5���m�(�I¡ � �)�)�V�f¤'���
�3� ��� �]�(� � �I� � J� � 2��?�¡��!?�¡��&�(� � ¯�� ��
�1�(?ã¢w£5�3��$K�!L�M�N�� � O9P;,�5Q
¢ � �1���
�� ��R�
�! (�
�/���S�4�%.
?��K£5� � ,4�I¡ � �* 2�, ��
�* G¢w¡ � �I � �)�)��¤4TK�!���! U �� � ����.ã�G G¡
¢V (�
V:W�X �I�&�¯�G¢ � �&�
�1¢��
�R�%�

�
 � ¤8�K�
�OA�¡i�G V:W�XY� �^ (� � �%�
�
 �
 Qã¢��Ã¡��I¢��
�D� � �! �
 2�

�
 � ¤[Z).½���(�!F).
� � V:W�X ��¢V¡��1 2� � �%�
�&��¡��& (.�¡ � �!���)�L ��)�\?ã¡��!, � �4.�� VOW�X ¤

Figure 3.1.: Kademlia binary tree. The black dot shows the location of node 0011 · · ·
in the tree. Grey ovals show subtrees in which node 0011 · · · must have a
contact. (Source: [21])

We now note how if each node only knows a single node for each of its individual
sub-trees that is sufficient to be able to find any other given node.4 As every node has
divided his immediate neighbourhood into smaller sub-trees, if the given node we know
in a given sub-tree is not the node we are looking for, we are certain that the node we
do know will know a closer node to the node we are looking for (if it doesn’t know it
directly) as it has divided the tree according to its location.

In actual fact, in order to work around so-called node churn, each node tracks k nodes
in each sub-tree. These lists are known as k-buckets. k is known as the replication factor
and is chosen to ensure with high probability that at least one of the nodes will remain
online at any given time. Additionally the list is curated periodically to eliminate un-
reachable nodes and resort the list by uptime of each node, as [28] has shown that the
longer a node stays online, the longer it is likely to remain online.

An example of the path taken to converge on a given address is illustrated in figure 3.2.
We note how our starting node, 0011 · · · , is looking for a node, 1110 · · · , but only knows
101 · · · in the k-bucket where the highest order bit differs. 0011 · · · contacts 101 · · · and
asks him if he is the closest active node to 1110 · · · or who he knows who is closer than
him to that node-ID. 101 · · · only knows 1101 · · · in his corresponding k-bucket and he
returns this to 0011 · · · . In turn 1101 · · · returns the only node known to him, 11110 · · · .
Finally upon contacting 11110 · · · , 0011 · · · gets the address of node 1110 · · · .

The only networking requirement of Kademlia is P2P User Datagram Protocol (UDP)
connections.

4We will not reproduce the proof here, it can be found in [21].

12

Nicholas Helke

Space of 160−bit numbers

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

0

0

����� ¤����
	7¢��
����� � ¢ � ��� ¢w¡�� G¡����m¤
���
�ï���Ã¢P£����
�w ����
�! ��L ��
�"�#�½£�¢w � � � ��$ � �%�
�
���
�
'&�&(&
��� ��)�� G¡��!�m¤�*'¡
¢!�+�!,V¢-�`�R���
�! ��.½�ã G¡����V� ��� /� � £0� � �)�)� �
�
�
1&(&2& �3.ã�G
�½¢!,4�,¢]£5� � G¢w£f f¤

1

2

3

4

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11 Space of 160−bit numbers

����� ¤06%�87'�[£f¢V ���
� ¢ � �%�
���%� � ¯�:92;1¤8<=�&¡��� ��
� � �%�
�> � (�@?ã¡���ACB ���

 A � �ã�� ��
�
� �)�)�D � ��E?ã¡���A�B

�
 � �%�Ú��.ã£N£5�&�¯� � ,4�!���+���I¢w¡ �C���
� ��$�¢ � �GF).
�I¡�� ���
� £H�#�m�(�I¡á¢ � �
£5���m�(�I¡ � �)�)�V�f¤'���
�3� ��� �]�(� � �I� � J� � 2��?�¡��!?�¡��&�(� � ¯�� ��
�1�(?ã¢w£5�3��$K�!L�M�N�� � O9P;,�5Q
¢ � �1���
�� ��R�
�! (�
�/���S�4�%.
?��K£5� � ,4�I¡ � �* 2�, ��
�* G¢w¡ � �I � �)�)��¤4TK�!���! U �� � ����.ã�G G¡
¢V (�
V:W�X �I�&�¯�G¢ � �&�
�1¢��
�R�%�

�
 � ¤8�K�
�OA�¡i�G V:W�XY� �^ (� � �%�
�
 �
 Qã¢��Ã¡��I¢��
�D� � �! �
 2�

�
 � ¤[Z).½���(�!F).
� � V:W�X ��¢V¡��1 2� � �%�
�&��¡��& (.�¡ � �!���)�L ��)�\?ã¡��!, � �4.�� VOW�X ¤

Figure 3.2.: Locating a node by its ID. Here the node with prefix 0011 finds the node
with prefix 1110 by successively learning of and querying closer and closer
nodes. The line segment on top represents the space of 160-bit IDs, and
shows how the lookups converge to the target node. Below we illustrate
RPC messages made by 0011. The first RPC is to node 101, already known to
0011. Subsequent RPCs are to nodes returned by the previous RPC. (Source:
[21])

V2 13

3. Challenges of Completely Decentralised Communication

3.2. Establishing the connection

Having found Bob in the proverbial haystack that is the internet, Alice is going to want
to establish a connection with him. The choice of the term communication is deliberate
as once a connection is established (and depending on the bandwidth), Alice and Bob
can exchange anyway they want. Obvious choices are text chat, Voice over IP (VoIP)
or video. This memoir will only provide text as the expertise and codecs needed for
VoIP or video fall outside the scope of this memoir. Regardless of the chosen medium of
communication or the IP version used, a majority (to not say all) users are located behind
firewalls, designed to refuse uninitiated incoming connections. This makes establishing
“pure” P2P connections a real challenge, a challenge which is the subject of this section.

There is or was some hope that this would no longer be an issue when Internet Proto-
col Version 6 (IPv6) finally gets widely deployed, as each device will in theory be directly
addressable from the internet and NAT will no longer be an impedance to establishing
connections. Sadly early indications are that firewalls built into IPv6-compatible con-
sumer routers will by default refuse uninitiated connections, meaning that the same
contrived strategies developed to circumvent Internet Protocol Version 4 (IPv4) NAT,
will unfortunately continue to be relevant after the switch to IPv6, in order to allow
incoming connections.

The terms of reference of this memoir call only for IPv4 connectivity, so we will focus
on that in this section, we should however keep in mind that some of this work will be
relevant should this project ever be extended for IPv6 connectivity.

The cleanest means to enable P2P connections to be established through NAT and
arguably the only means that respects the definition of a “pure” P2P system, is the use
of port mapping protocols to negotiate the opening of incoming ports on the router
or Internet Gateway Device (IGD) and to discover the publicly addressable IP address
that should be announced to the world. There are two main port mapping protocols,
Universal Plug and Play (UPnP) and Port Control Protocol (PCP), both are discussed in
more detail in section 4.4.

Not all IGDs support port mapping protocols. These protocols are considered by
many to represent security risks and so are generally disabled (even if the hardware
supports them) on most (to not say all) enterprise IGDs. As this limitation concerns all
P2P networks, both “pure” and “hybrid”, wishing to establish P2P connections between
peers, other solutions have already been developed, however there is no panacea.

Session Traversal Utilities for NAT (STUN), defined in [26], is a protocol enabling
nodes behind NAT to discover not only their publicly addressable IP address but also
their external port number. This information is only valid however for non-symmetric
NATs as defined in [20]. Additionally STUN’s reliance on servers discovered using Do-
main Name System (DNS) service records, means that using this strategy immediately
downgrades any P2P network to a “hybrid” P2P network.

Some of the principals of STUN can potentially be used in a “pure” P2P system as
long as each peer acts as a STUN server. There are however security concerns with
such a strategy. An unauthenticated STUN server could potentially perform a DDoS
attack by providing all nodes with the IP address of the victim as their own, the nodes

14

Nicholas Helke

would in turn publish this to the DHT thereby getting other nodes to DDoS the targeted
IP address. If we only perform STUN procedure after we have authenticated the peer
as trustworthy (a concept we will discuss in section 3.3), we can then only realistically
join the network as long as one of our contacts remains not only online, but accessible in
case of network split, meaning he must be in the same subnet after the split. These make
for unrealistic expectations and reliance on such a strategy would weaken the system’s
resilience as a whole.

It should also be noted as long as one of the two peers which are attempting to estab-
lish a connection is publicly accessible (perhaps thanks to port mapping) a connection
can be established between the two. It is only if both users are not publicly accessible
that additional methods must be employed.

Commercial communication solutions use Traversal Using Relays around NAT (TURN)
as defined in [20], or in plain English, a relay server. As with STUN while the standard
is designed around the use of a server, the principals can be reused in a decentralised
solution, although it may no longer strictly be considered a “pure” P2P solution, accord-
ing to [29], as the peers are no longer all equal. This is by no means a novel idea; Skype
uses them. In fact relay servers in a decentralised system are known as super-peers.

As noted above as long as one of the nodes is publicly accessible, a communication
can be established. The addition of super-nodes therefore enables two non-publicly
accessible nodes to nevertheless communicate by using a third-party super-node which
is publicly accessible as an intermediary for the connection.

Super-peers are far from ideal. Skype was infamous for automatically using clients
running their software as super-peers or supernodes, without warning their users or ask-
ing for their consent beyond an article in their terms of service. A more conscientious
way, would be to ask potential super-peers whether they are willing to act as such,
thereby allowing them to reach this decision consciously and to factor in considerations
like their bandwidth costs. This of course will mean that only a small minority of the
minority of potential super-peers will actually play that role, as many users unfamiliar
with the concept will, in doubt, simply turn down the option, if given the chance. This
probably factored into Skype’s decision to simply require potential super-peers to act as
such in their terms of service.

The observant reader will have noticed the use of the past tense in the last paragraph.
The reason is that Skype has since abandoned its super-peers, as reported in [11], in
favour of centrally controlled relay servers that act like the old super-peers.

Another downside to super-peers is that they potentially open up the protocol to
eaves-dropping. An obvious solution is to use encrypted connections, thereby theo-
retically preventing super-peers from knowing the contents of what you exchange with
other peers. However in an age where governments are building super-computers with
the potential to brute-force encrypted connections in a matter of minutes, governments
might be tempted to set themselves up as super-peers and thereby eaves-drop on many
communications within the network. Additionally in case of political tension, the gov-
ernments could easily turn off their super-peer network thereby disrupting communi-
cations on the network, if the network grew to rely on super-peers. Latency is another
issue with the use of relays, particularly for VoIP or video. The additional encapsulation

V2 15

3. Challenges of Completely Decentralised Communication

required to route the packets via a relay would add to the latency induced by the lower
network layers.

Interestingly ever since Skype has centralized its super-peers, it has started sharing
data with the National Security Agency (NSA) as part of PRISM, as reported in [22].

Theses considerations mean that using super-peers actually has the potential to weaken
the resilience of the network. While it may enable more users to connect to the network
in the short-term it also increases greatly the number of users who would suffer service
disruptions if the network were to be disrupted. Section 3.4 goes into more detail of the
resilience of the chosen strategy to topology changes.

For the sake of exhaustiveness, I must point out that in light of recent revelations
about the practices of western governments’ security services, it would seems that even
western governments have control over the Internet Service Providers (ISPs) that serve
most if not all end-users. This means that resilience to topology changes might be of little
relevance, if the government can simply tell ISPs to shut down. Concerns over privacy
and resilience with super-peers pale in comparison to theses concerns. However the
solutions to these concerns of government over-surveillance are an issue for a political
science paper and not a computer science issue.

3.3. Security

We have already discussed in section 3.2 the challenges and potential issues with pass-
ing your data around third parties and how encryption could be used to help protect
against such attacks. Encryption is also just generally a good idea. There is no reason to
offer would-be eavesdroppers the opportunity to do so. In this section we will discuss
possible encryption techniques and the possibility of obfuscating the protocol.

This is not however the only security concern. As with any P2P communication sys-
tem that maps users to IP addresses caution must be taken to prevent third parties from
tracking the location of users by tracking the IP addresses they connect from. In this
section we will therefore also discuss what steps we propose to mask to a certain extend
this information.

3.3.1. Obfuscation

The use of Mainline DHT, as discussed in section 3.1, means that we announce ourselves
to BitTorrent clients as a BitTorrent client participating in the swarm with the infohash
(the BitTorrent terminology for a Torrent’s SHA1 hash) of our public key. This means
that a non-standard BitTorrent client which has been programmed to attempt to down-
load any Torrent it hears about through the DHT might attempt to connect to our client.
This fact actually gave me the idea that I might down the line add an actual BitTorrent
client to the program and offer up the actual public key file if a BitTorrent request was
received, easily identifiable by the protocol header, cf. figure 3.3.

This simple and plain text header coupled with the enormous amount of traffic gen-

16

Nicholas Helke

00000000 19 42 69 74 54 6f 72 72 65 6e 74 20 70 72 6f 74 |.BitTorrent prot|
00000010 6f 63 6f 6c |ocol|
00000014

Figure 3.3.: Hex dump of BitTorrent protocol header as defined in [6]

erated by BitTorrent prompted ISPs to throttle BitTorrent traffic5.
In response some BitTorrent clients (but notably not the reference implementation) in-

troduced Message Stream Encryption (MSE)6. MSE uses Diffie-Hellman key exchange,
the infohash of the torrent the connection’s initiator is attempting to download as a
shared secret and random noise to obfuscate traffic between BitTorrent clients includ-
ing importantly the headers. The solution uses the exchanged key to encrypt the rest
of traffic using RC4. The solution is not cryptographically secure. It is designed to be a
cheap (resource-wise) obfuscation solution and nothing more.

I toyed with the idea of using the same method so as to provide users of the system
with plausible deniability, if for some reason the use of this system was to become illegal
someday, somewhere. Statistical detection, it transpires in [15], is capable of detecting
BitTorrent traffic even with MSE.

Consider voice communication. Talking is made up of moments of sound separated
by pauses, particularly in conversation when the speaker is considering what to say on
the spot. An additional tell-tale sign of voice communication is that generally only one
person speaks at a time. Tracking the volume of the packets send between hosts enables
one to recognise these patterns of silence, talk and only one user at a time. In fact Charles
V. Wright et al show in [33] that it is not only possible to recognise the use of VoIP even
over encrypted channels, but also to detect certain spoken phrases with characteristic
patterns.

This statistic detection means it would very likely also be possible to differentiate the
traffic of the proposed communication system from that of BitTorrent traffic rendering
null and void the possibility of plausible deniability. Unfortunately I came by this in-
formation only after I had already written and submitted a patch (cf. appendix D.2) to
a Go library for Diffie-Hellman key exchange7 which was missing support for arbitrary
parameters not defined in the seminal Requests for Comments (RFCs) [14, 17].

As mentioned above, MSE is not cryptographically secure, so its use would have
added an additional layer of encryption to the layer necessary to ensure private com-
munication. Given the statistical detection and the fact that the traffic would in any case
have to be encrypted by other means as well, I decided to abandon the idea of obfuscat-
ing the traffic. Steganography is therefore left as an exercise for the reader.

5https://torrentfreak.com/new-data-exposes-bittorrent-throttling-isps-120809/
6http://wiki.vuze.com/w/Message_Stream_Encryption
7https://github.com/monnand/dhkx

V2 17

https://torrentfreak.com/new-data-exposes-bittorrent-throttling-isps-120809/
http://wiki.vuze.com/w/Message_Stream_Encryption
https://github.com/monnand/dhkx

3. Challenges of Completely Decentralised Communication

3.3.2. Handshake

Anyone can announce themselves as you on the Mainline DHT, by design. One of the
first things I tried when I had the DHT code working was looking up the hash of my
public key, which I am fairly confident does not correspond with a real Torrent. I dis-
covered that countless peers announced themselves as participating in such a torrent,
even though the chance of such a Torrent existing is less than your chances of being
mauled by an escaped gorilla8.

It turns out that there are numerous bad nodes out there, some sponsored by record
companies, others by movie studios, and who knows who else. The roles of these bad
nodes can be to pollute the DHT with incorrect information, track usage, a combination
of the former and the latter, or something else yet.

This means that when we search for a given person, we cannot be certain which of the
many hosts that announce themselves are genuine. Obviously the only way to be sure
is to attempt a handshake with each and every peer. Some will simply drop the con-
nection, other will mimic the BitTorrent protocol, and there may well be other, as yet,
unobserved behaviours. Regardless we must design the handshake in advance to pro-
tect against malicious peers that might be set up to track users. The handshake should
also be hardened against replay attacks which would-be spammers might be tempted to
exploit in order to send spam on the network, should it ever garner a sufficient follow-
ing.

A good handshake should therefore ensure the following:

1. The handshake must protect the initiator from identifying himself to an unautho-
rized user who might otherwise impersonate one of your friends in order to track
you by logging your IP address every time your node attempts to connect.

2. The handshake receiver must be reasonably protected against replay attacks, where
an unauthorised host who has somehow capture an initiator’s packet sends it to
the receiver in the hopes of discovering if the receiver is present and whether the
receiver responds to the captured initiation packet.

3. The handshake initiator must be reasonably protected against replayed responses,
where a malicious host attempts to fool the initiator into believing it is an autho-
rised peer by replying with a previously captured good response from a real au-
thorised peer.

Meeting these requirements can be done using public-key cryptography, by following
the following procedure:

1. The handshake initiator signs his/her public IP address, the current date and time
in Coordinated Universal Time (UTC) and a random authentication token with
his/her private key and then encrypts message with the public key of the receiver.

2. The receiver decrypts the message, checks the signature. To guard against replay
attacks, the receiver checks the IP address and the timestamp.

8http://stackoverflow.com/questions/4676828#4681221

18

http://stackoverflow.com/questions/4676828#4681221

Nicholas Helke

3. The receiver replies to the initiator with his IP address, timestamp and the ran-
dom token received from the initiator, signed with the receiver’s private key and
then encrypted with the initiator’s public key. At this point the receiver is reason-
ably certain of the receiver’s authenticity and starts awaiting messages from the
initiator.

4. The initiator checks the IP address and timestamp of the returned packet as well as
the random token sent to the receiver. If the tests pass, the initiator can be reason-
ably certain of the authenticity of the receiver and can start exchanges messages
with him/her.

The use of the tuple (IP address, timestamp, random token) means that we can safely
relax the timestamp resolution to one hour thereby removing the need for synchronized
time between hosts.9 This tuple forms the main protection against replay attacks, it is
unlikely in any given hour that an attacker will be able to take over a given IP address
and see the same random token be generated.

As all messages in the handshake are encrypted with the public keys of their intended
recipients, the best an attacker could hope to achieve with a replay attack is user tracking.
That is an attacker could confirm the location of a given user by replaying the packets
of a contact of that user. The proposed system cannot be expected to detect cases where
the private key has been compromised.

3.3.3. Encryption

Public-key cryptography is computationally expensive. Like many before, we propose
using public-key cryptography only for the handshake. Thereafter Advanced Encryp-
tion Standard (AES) should be used. The attentive reader will recall our handshake
procedure includes a random token. This random token corresponds to the AES key
used for all communication after the handshake.

You will also recall that at the end of our handshake procedure the receiver is in the
waiting state, waiting for messages from the initiator. The initiator must therefore send
a ping over the AES channel if the handshake completes to tell the receiver that the AES
channel is established and symmetric, meaning that either host may send messages on
the channel asynchronously. The actual network protocol is discussed in section 4.6.

3.3.4. Web of Trust

In order to prevent spam, Web of Trust (WoT) is used in lieu of expensive and environ-
mentally unfriendly proof of work as used by Bitmessage (cf. section 2.1). This does
however mean that new people may not contact you before exchanging their public
keys with you. This strikes me as an acceptable trade off. Additionally I have no plan

9It dawns on me that time synchronisation between coordinating but not centrally controlled hosts would
make for an interesting paper. The problem of time synchronisation between centrally controlled hosts
is a well known textbook example.

V2 19

3. Challenges of Completely Decentralised Communication

to replace the existing Pretty Good Privacy (PGP) key-servers. In case of degraded con-
nection, this may prevent temporarily the creation of new contacts. A possible work
around for this would be manually exchange keys, using physical media like a mem-
ory card or stick. Another option, and one which could conceivably be build into the
application at a later date, would be to use the BitTorrent protocol, seeing as nodes an-
nounce themselves as participating in the torrent corresponding with the public key.
We have already seen in section 3.3, that BitTorrent has a distinctive header. It would
be relatively easy add a minimal BitTorrent client to the program that would serve up
the public key, upon detecting a BitTorrent connection. This option however would be
reserved as a stop-gap solution for those cases when the standard PGP key-servers are
unavailable.

3.4. Ensuring resilience to topology changes

Alice is connected to many different peers participating in the communication system.
All of a sudden a backbone connection is lost. Alice now wishes to contact Bob. A
physical link exists between Alice and Bob, however who is to say whether Alice knows
random people she can contact between her and Bob who are in the same subnet formed
by the lost uplink connection.

It turns out unfortunately that this is impossible to predict and will depend on many
different factors outside of the control of this project. One worrying fact even without
topology changes is that [7] found that due to variations in implementations of routing
code not all the supposedly compatible Mainline DHT clients conform sufficiently to
Kademlia in order to ensure deterministic convergence on requested nodes.

We can attempt to anticipate what might happen, however without a full scale test
this will remain purely theoretical behaviour. What should happen when the network
splits, is that users on either side of the split will all of a sudden see a number of the
nodes they have in their k-buckets disappear. It will and should be able to compensate
for this provided that at least one node per k-bucket is still accessible. Since all nodes
will behave in this manner, the result will be two completely independent Kademlia
DHTs. One on each side of the split.

For instance without tests it is difficult to estimate how probable it is for more than two
DHTs to exist after the physical split. Intuitively it seems unlikely, however theoretically
it could still happen.

Consider three subsets of nodes A,B,C. Before a topology change, they are all phys-
ically connected to one another, however it just so happens that nodes in A only have
nodes from A ∪ B in their routing tables, while C only has nodes from C ∪ B in its
routing tables. If we now split the network between A and B and C and B such that
A and C are still physically but A is not, we have created a case where there are three
overlay-subnets for only two physical subnets.

Additionally these overlay networks may not be able to join back together automat-
ically. The most effective way to merge split overlay networks is to reseed routing ta-
bles using a common centralised DHT node. Under normal circumstances this seeding

20

Nicholas Helke

server is used by freshly installed clients to enable them in seed their routing tables.
It is however reasonable to assume that if a network split occurs these are not normal
circumstances. Theses seeding routers, like all central infrastructure are a weak link,
and could relatively easily be attacked in coordination with a network split so as to pre-
vent the networks from merging without a software update changing the seeding server
address.

While I was at San Jose State University (SJSU) finishing this thesis, I came across a
platform, called PlanetLab10, for testing P2P programs like this one. I tried to take ad-
vantage of it while I was in San Jose. Jon Pearce, dean of computer science at SJSU,
kindly put me in touch with the engineer responsible for SJSU’s participation in Plan-
etLab, Xiao Su. Unfortunately she was away while I was in San Jose and was unable to
grant me access to the platform while on the road. I was therefore most unfortunately
unable to confront the above theory to reality.

In summary the theory is that a network should split into just two overlay-subnets and
the two networks should be able to merge again provided enough time and common the
seed of nodes. Unfortunately without PlanetLab it was impossible to test.

10https://www.planet-lab.org/

V2 21

https://www.planet-lab.org/

3. Challenges of Completely Decentralised Communication

22

Nicholas Helke

In theory, theory and practice are
the same. In practice, they are not.

(Albert Einstein)

4. Implementation

This chapter discusses the implementation of a proof of concept software application
implementing the theoretical solutions discussed in Chapter 3 and an associated net-
work application protocol.

The implementation details are discussed through concrete examples in the Go pro-
gramming language1, which was used in the development of the proof of concept ap-
plication. The application network protocol is however, as required by the terms of ref-
erence (cf. page iii), architecture, platform and language agnostic. It should therefore
nonetheless be possible to implement a conforming application in another language by
following this chapter.

The process by which the application’s architecture was determined and the reasons
behind the choice of Go as a programming language are discussed in section 4.1.

The shaping of the reference implementation’s internals are the subject of section 4.2.
Section 4.3 discusses the use of Kademila[21], a Distributed Hash Table (DHT), to

find the Internet Protocol (IP) addresses of node in the network. More specifically the
section discusses the use of the BitTorrent network’s instance of Kademlia, known as the
Mainline DHT [19].

Section 4.4 discusses the connection process, a Go library I wrote for the purpose of
mapping ports on Universal Plug and Play (UPnP) Internet Gateway Devices (IGDs)
and confronts the theory of traversing Network Address Translation (NAT) with reality.

Section 4.5 discusses the implementation of the security features discussed in sec-
tion 3.3 and in particular the reworking of the handshake procedure to work around
NAT.

Section 4.6 discusses the communication protocol and its features to support arbitrary
communication mediums including but not limited to text, voice, video and files.

4.1. Designing the program’s architecture and choosing a
programming language

The strategy described in Chapter 3 has a significant drawback in that it is slow. Median
lookup times were found in [7] to be over a minute. Although in my experiments I found
it to be much faster, often less than 30 seconds. This still makes for an unacceptable
launch time for an interactive user oriented application in this day and age. This led
me to consider decoupling the application into two parts, a daemon which starts with
the user session and a front-end application which merely presents the communications
and availability information collected by the daemon.

1http://golang.org/ref/spec

V2 23

http://golang.org/ref/spec

4. Implementation

A considerable advantage to decoupling the backend and the frontend is that it forces
the creation of a well defined Application Programming Interface (API) between the
two. A well defined API greatly simplifies the creation of a multitude of different fron-
tends for a wide variety of device and platforms. This in turn encourages the develop-
ment of native frontends on each platform, which greatly improves the user experience
on each platform, thereby increasing the good-will towards the application. An impor-
tant consideration for increasing an open-source application’s audience, where there is
no money for marketing.

Splitting the program into separate daemons and front-ends is also necessary in order
to efficiently support smartphones. While far more efficient than BitMessage (cf. sec-
tion 2.1), the strategy of this paper still is not appropriate for mobile applications where
power efficiency is the primary concern. The number of connections required and the
fact that the application must keep a socket open for incoming connections makes it a
poor match for mobile devices.

Client-server communication is far more efficient than Peer-to-Peer (P2P) communi-
cation. Decoupling the back-end would allow a mobile client to be developed which
would let the back-end run on a server. Obviously this defeats the whole purpose of
this communication system, however it can be seen as just one possible tier in a tiered
solution.

The tiers can be organised from most energy efficient and least resilient to least effi-
cient and most resilient. Users not concerned with delegating their backend process to
a third party could opt for an even more efficient tier which could use vendor provided
push notifications services to further increase energy efficiency on the mobile device.
The three tiers are described below and illustrated in figure 4.1.

1. The bottom tier from a reliability perspective and the top tier from a power ef-
ficiency perspective is to delegate the running of the daemon to a central server
controlled by the mobile application developer. The central server can then use
vendor controlled push services (e.g. Apple Push Notifications2 or Google Cloud
Messaging3) to push events to the client as needed, leaving the application free to
suspend completely when not in use. Figure 4.1(a)

2. The second tier would be for the mobile application to connect to an instance of the
daemon running on a machine controlled by the user (e.g. his desktop computer).
This would then only require the mobile application to maintain one connection,
with the daemon. This would require the application to stay in the background,
thereby draining the battery more than in the first tier. Figure 4.1(b)

3. The third and most resilient tier would be used as a fallback should either or both
of the first two fail and would consist of running the daemon on the mobile termi-
nal. Figure 4.1(c)

2https://developer.apple.com/notifications/
3https://developer.android.com/google/gcm/

24

https://developer.apple.com/notifications/
https://developer.android.com/google/gcm/

Nicholas Helke

...Internet..

PC

..

PC

..

PC

..

Backend Server

..

Notification Service

..

Smartphone

(a) Most efficient tier, where communication with the mobile device is delegated to a third party

...Internet..

PC

..

PC

..

PC

..

User’s PC

..

Smartphone

(b) Efficient tier, where the mobile device keeps a single connection open with the user’s own PC, which
runs the backend

...Internet..

PC

..

PC

..

PC

..

Smartphone

(c) Most resilient tier, where the phone runs the backend locally and connects directly to the other clients
of the communication system

Figure 4.1.: The various possible tiers which can be used by a mobile device to partici-
pate in the communication system from most efficient and least resilient to
lest efficient and most resilient

V2 25

4. Implementation

Ideally a mobile implementation of this communication system would provide all
three tiers and would automatically switch between them, or at least let the user switch
between them as they become viable or not.

Initially I thought of using ubiquitous C. C has the advantage of being very portable.
C even works on Android, using the Native Development Kit (NDK). C also has a vast
array of well supported (and sometimes well written) libraries for a wide range of use
cases.

C also has considerable disadvantages and is a ruthlessly low-level by today’s stan-
dards. It is neither type-safe nor memory-safe, almost inevitably leading to segmenta-
tion faults during development (or worse during deployment) which are a real bane to
debug.

I also considered two Java Virtual Machine (JVM) languages, Java or Scala4. Both Java
and Scala are memory-safe and Scala is type-safe to boot. I ultimately ruled them out as
too bloated for a daemon and because Apple is no longer shipping the Java Runtime with
new Macs thereby severely diminishing its attractiveness as a cross platform solution.

I ultimately settled on Go.
Go is a relatively young open-source system programming language developed by

Robert Griesemer, Rob Pike and Ken Thompson at Google starting in 2007. It is both
memory-safe and type-safe, it has garbage-collection and sports a C-like syntax. It is
a fast compiled language which produces statically linked binaries only slightly larger
than C binaries that link to the local libC, but are still an order of magnitude smaller
than what would be possible with the JVM. It is simple (thanks to [4]) to cross compile
Go programs for all the platforms it supports and, importantly, it provides a unified
network interface regardless of the kernel. The only relevant platform not yet supported
by Go is Darwin/ARM, however given that there is no facility to run daemons on stock
versions of iOS. It can therefore be argued that this is a non issue for this project as only
the first two tiers are possible in any case on that platform.

My inner autodidact also wanted to try this language that it had learn the previous
summer but had not yet put to good use.

4.2. Reference implementation’s application architecture

The terms of reference call for a reference implementation. We have already discussed
in section 4.1 generally our plans for the reference implementation. In this section we
will discuss the plan for the application’s inner structure and then in the subsequent
sections we will actually see the code.

Now is also the time to announce that the codename of the reference implementation
is Dictator Breaker. You will see this mainly in the code in appendix B.

One of the reasons I chose Go is its notoriety for good, compiled, cross-platform sup-
port, as covered in section 4.1. There are however some platform specific issues that
no abstraction layer can efface. In particular there are no so-called UNIX sockets on

4http://www.scala-lang.org/

26

http://www.scala-lang.org/

Nicholas Helke

Windows. This is an issue for communication between the backend and the frontend; a
UNIX socket would have been ideal for this.

In order to work around this issue I decided to go a different route and develop a
WebSocket server bound to the loopback interface, that would serve the Graphical User
Interface (GUI) to users in their browsers. Serving a GUI as Hyper-Text Markup Lan-
guage (HTML)/JavaScript (JS) over Hyper-Text Transport Protocol (HTTP) is not new
or indeed scarce. Probably the most widely deployed such program is the Common
Unix Printing System (CUPS), which is installed on all Macs and is the principal printer
subsystem in use in Linux-based distributions.

Another platform specific note is for tiered solutions for smartphones. For the pur-
poses of simplicity the reference implementation includes the encryption in the backend
to avoid having to implement it for each different platform in each different backend.
This works well on desktop machines where the communication between the backend
and the frontend happen over the loopback interface and therefore are safe from snoop-
ing (except from root). In the tiered solutions proposed for smartphone communication
in Figure 4.1 the channel between the backend and the front end is not secure except
for 4.1(c) which is equivalent to the desktop case. In order to reduce the need to sub-
stantially modify the backend for the smartphone use-case, I structured divided the
program into the components seen in figure 4.2.

The plan was that only the Protocol Manager would have had to be adapted for the
mobile use-case and that the interfaces, be they desktop or mobile, would sit just above
it.

If you look closely you will note a circular dependency in the graph of figure 4.2.
This circular dependency and the fact that the interface turned out to need to influence
happenings as far down as the connection manager led me to the realisation that the
structure didn’t properly match what I needed for the data and events that I was pro-
cessing.

In stead I opted for a monolithic event or run loop. This loop, in the main function
would take care of all incoming events, be they from the OS or from the GUI and would
dispatch them as necessary.

The structure and packages in the final architecture are illustrated in figure 4.3.

4.3. Finding peers

Something I found amusing when it came to implementing the finding of peers using
BitTorrent’s Mainline DHT is that, for the first time I can remember, I was unable to find
a maintained C library. This fact played a role in the choice of Go. The best I could find
for C was BitDHT by Robert “DrBob” Fernie, however it was last updated in 2002. I
contacted DrBob who informed me that he had moved on to other projects.

Finding a well maintained self-contained library to interface with the Mainline DHT
of BitTorrent for Go, turned out to be a leisurely walk in the park. I searched for “dht” on
GoDoc5 and immediately came across a “dht” package maintained by Yves Junqueira

5http://godoc.org/ – GoDoc is a central website which keeps up-to-date documentation on all open-

V2 27

http://godoc.org/

4. Implementation

..DHT Manager.

Connection Manager

.

Protocol Manager

.

GoUPnP

.

DHT Library

.

Request Peer

.

Found Peer

.

Outgoing Connection

..

Incoming Connection

.

Request Peer

.

New Connection (in/out)

.

UPnP

Figure 4.2.: The various components of the original plan for the reference implemen-
tation and the messages that they exchange. Solid rectangles represent
the various components of the originally planned reference implementation.

..Arrows. represent OO messages passed between components. ..Arrows.

not originating in a component, are external events, passed to the program
by the OS. ..Italic dashed rectangles represent external libraries.

28

Nicholas Helke

..Main Runloop.

Messaging Package

.

Security Package

.

WebSocket

.

GoUPnP

.

DHT Library

.

Se
ria

lis
e/

Pa
rse

.
Encrypt/Decrypt

.

User I/O

.

Req
uest

Pe
ers

.

UPnP Calls

Figure 4.3.: The ultimately settled upon architecture. Solid rectangles represent the

internal packages of the application. ..Italic dashed rectangles represent ex-

ternal libraries. ..Arrows. represent what the Main Runloop exchanges

with the other package or it uses them for. All OS events are handled by the
Main Runloop

V2 29

4. Implementation

on GitHub6. At the time there was only one other result which was completely inactive
and incompatible with BitTorrent’s Mainline DHT.

The package’s interface is remarkable simple. A minimal example to get up and run-
ning might Go (pun intended) something like this:

1 // Create a new DHT instance
2 // Arguments are:
3 // - local port number
4 // - target number of peers in routing table
5 // - a boolean indicating whether to store the routing table on disk
6 d, err := NewDHTNode(6881, 100, false)
7 if err != nil {
8 fmt.Println(err)
9 return

10 }
11

12 // After checking above that there was no error, we can safely fire up the
13 // DHT's thread
14 go d.DoDHT()
15

16 // Now we can search for a particular key or infohash in BitTorrent parlance
17 // Arguments are:
18 // - the binary infohash stored as a '\0'-terminated string
19 // - a boolean indicating whether we are downloading the specified
20 // infohash or just acting as a passive node
21 d.PeersRequest(string(infoHash), false)
22

23 // We can get the responding peer(s) by listening (or in this case iterating)
24 // over all the results returned by the DHT's PeersRequestResults channel
25 for infohash, peers := d.PeersRequestResults {
26 // Do something useful with the received peers
27 }

During my testing of the library I wished at one point to run several instances of the
DHT on single machine. This prompted me to go ahead and set the port number to 0,
which by convention means to let the OS auto-assign a free port. This actually revealed
a bug in the library.

As well documented as the simple public API of the library is, the internal working
of the library were not particularly well documented or indeed commented. This made
tracking down the bug challenging until it was suggested somewhere that I use a pro-
filing tool’s call graph to gain a better understanding of the relationships between the
private functions. I ran the Go profiling tool against the find_infohash_and_wait ex-
ample that is bundled with the library’s code and which is essentially the above example

source Go libraries. It does this by checking their code out of their respective Version Control System
(VCS) when ever a user checks the project’s documentation page. This is made possible by the way the
Go programming language constructs package names to include the Universal Resource Locator (URL)
of the VCS system that contains the code.

6https://github.com/nictuku/dht

30

https://github.com/nictuku/dht

Nicholas Helke

code wrapped in a main function. This produced the call graph in figure 4.4.
The bug came from the fact that the library did not check what port the OS returned

and simply took at face value the port number the library user supplied, this meant that
the library was reporting to other peers that it was reachable at port 0 which of course
makes no sense. I wrote a patch, cf. appendix D.1, for the library and submitted it to
Junqueira who was very encouraging and after asking me to review one change I made
merged my patch into the upstream project.7

The specification of the Mainline DHT is that it announces the Transport Control Pro-
tocol (TCP) port at which the participating peer can be reached. The specification does
not define what to do if a single IP address publishes more than one port number for a
given IP address. Some libraries actually replace the port number in the existing entry.
This is something I only realised during the implementation phase. This does unfor-
tunately potentially introduce non-deterministic behaviour if there are multiple hosts
sharing a single address.

4.4. Establishing a connection

As established in section 3.2, many if not most end-user’s hosts are behind NAT, which
must somehow be circumvented in order to enable P2P communication.

We discussed not using super-peers and therefore must map ports on routers as our
only way in. Fortunately many routers support it. Unfortunately not all. This may
therefore remain a theoretical exercise.

4.4.1. Using SSDP and UPnP to create port mappings in compatible routers

For the purposes of this project I developed a small Go library for controlling a UPnP
enabled IGD as specified in [9].

When I was still thinking about using the C programming language, I happened upon
the MiniUPnP library8 (and MiniUPnPc UPnP port mapping client). The project in-
cludes a UPnP client to change mappings on UPnP enabled IGDs which is really quite
simple. When I determined that I would write my own Go library I decided to base its
API on it.

The library is called GoUPnP. It is GNU Public License Version 2 (GPLv2) licensed
and available from GitHub9. In this section we will development process behind the
library and associated binary, GoUPnPc (the c stands for client).

It is important first, to known the process by which a client creates a port forwarding
rule on a UPnP enabled IGD:

1. The client uses the Simple Service Discovery Protocol (SSDP) [10] to discover the
location and Simple Object Access Protocol (SOAP) endpoint of a UPnP enable

7This was very satisfying process, getting one’s code merged into an upstream open-source project, I am
encouraged to submit more patches to projects now.

8http://miniupnp.free.fr/ or http://miniupnp.tuxfamily.org/
9https://github.com/nhelke/goupnpc

V2 31

http://miniupnp.free.fr/
http://miniupnp.tuxfamily.org/
https://github.com/nhelke/goupnpc

4. Implementation

find_infohash_and_wait
Total samples: 19
Focusing on: 19
Dropped nodes with <= 0 abs(samples)
Dropped edges with <= 0 samples

gosched0
0 (0.0%)

of 19 (100.0%)

github.com/nictuku/dht.readFromSocket
0 (0.0%)

of 2 (10.5%)

2

github.com/nictuku/dht.(*DHT).DoDHT
0 (0.0%)

of 17 (89.5%)

17

github.com/nictuku/dht.(*DHT).getPeers
0 (0.0%)

of 2 (10.5%)

2

github.com/nictuku/dht.(*DHT).processPacket
0 (0.0%)

of 13 (68.4%)

13

github.com/nictuku/dht.(*DHT).findNode
0 (0.0%)

of 2 (10.5%)

2

github.com/nictuku/dht.readResponse
0 (0.0%)

of 3 (15.8%)

3

runtime.mapassign1
0 (0.0%)

of 1 (5.3%)

1

github.com/nictuku/dht.(*DHT).processGetPeerResults
0 (0.0%)

of 2 (10.5%)

2

github.com/nictuku/dht.(*DHT).processFindNodeResults
1 (5.3%)

of 7 (36.8%)

7

github.com/nictuku/dht.parseNodesString
0 (0.0%)

of 2 (10.5%)

1

github.com/nictuku/dht.(*routingTable).hostPortToNode
0 (0.0%)

of 4 (21.1%)

1
github.com/nictuku/dht.(*routingTable).getOrCreateNode

0 (0.0%)
of 5 (26.3%)

4

runtime.mallocgc
2 (10.5%)

of 6 (31.6%)

runtime.markallocated
3 (15.8%)

3

runtime.gc
0 (0.0%)

of 1 (5.3%)

1

github.com/nictuku/dht.(*routingTable).insert
0 (0.0%)

of 1 (5.3%)

1

github.com/nictuku/dht.newRemoteNode
0 (0.0%)

of 1 (5.3%)

13

net.(*UDPAddr).String
0 (0.0%)

of 2 (10.5%)

2

net.ResolveUDPAddr
0 (0.0%)

of 2 (10.5%)

2

runtime.slicebytetostring
0 (0.0%)

of 4 (21.1%)

runtime.memmove
2 (10.5%)

1

gostringsize
0 (0.0%)

of 3 (15.8%)

3

code.google.com/p/bencode-go.Unmarshal
0 (0.0%)

of 3 (15.8%)

code.google.com/p/bencode-go.unmarshalValue
0 (0.0%)

of 3 (15.8%)

3

code.google.com/p/bencode-go.parse
0 (0.0%)

of 3 (15.8%)

code.google.com/p/bencode-go.parseFromReader
1 (5.3%)

of 3 (15.8%)

5

code.google.com/p/bencode-go.(*structBuilder).Key
0 (0.0%)

of 2 (10.5%)

2

2

3

3

github.com/nictuku/dht.sendMsg
0 (0.0%)

of 3 (15.8%)

code.google.com/p/bencode-go.Marshal
0 (0.0%)

of 1 (5.3%)

1

net.(*UDPConn).WriteToUDP
0 (0.0%)

of 1 (5.3%)

1

expvar.(*Int).Add
0 (0.0%)

of 2 (10.5%)

1

3

strings.ToLower
0 (0.0%)

of 2 (10.5%)

2

sync.(*RWMutex).Lock
0 (0.0%)

of 1 (5.3%)

1

runtime.deferreturn
1 (5.3%)

1

fmt.Sprintf
0 (0.0%)

of 2 (10.5%)

fmt.(*pp).doPrintf
1 (5.3%)

1

1

github.com/nictuku/dht.(*DHT).findNodeFrom
0 (0.0%)

of 1 (5.3%)

1

github.com/nictuku/dht.(*nTree).lookupFiltered
0 (0.0%)

of 1 (5.3%)

1

github.com/nictuku/dht.(*DHT).getPeersFrom
0 (0.0%)

of 2 (10.5%)

2

2 11

github.com/nictuku/nettools.BinaryToDottedPort
0 (0.0%)

of 2 (10.5%)

2

net.(*UDPConn).ReadFromUDP
0 (0.0%)

of 2 (10.5%)

2

2

net.JoinHostPort
0 (0.0%)

of 1 (5.3%)

1

net.IP.String
0 (0.0%)

of 1 (5.3%)

1

net.(*netFD).ReadFrom
0 (0.0%)

of 2 (10.5%)

2

net.(*pollDesc).WaitRead
0 (0.0%)

of 1 (5.3%)

1

syscall.Recvfrom
0 (0.0%)

of 1 (5.3%)

1

net.resolveInternetAddr
0 (0.0%)

of 2 (10.5%)

2

net.SplitHostPort
1 (5.3%)

of 2 (10.5%)

net.byteIndex
1 (5.3%)

1

2

runtime.new
0 (0.0%)

of 2 (10.5%)

2

strings.Map
0 (0.0%)

of 2 (10.5%)

1

runtime.stringiter2
1 (5.3%)

1

2

code.google.com/p/bencode-go.writeValue
0 (0.0%)

of 1 (5.3%)

1

code.google.com/p/bencode-go.writeSVList
1 (5.3%)

code.google.com/p/bencode-go.writeStruct
0 (0.0%)

of 1 (5.3%)

1

1

code.google.com/p/log4go.Logger.intLogf
0 (0.0%)

of 1 (5.3%)

runtime.mapiterinit
0 (0.0%)

of 1 (5.3%)

1

code.google.com/p/log4go.Trace
0 (0.0%)

of 1 (5.3%)

1

concatstring
0 (0.0%)

of 1 (5.3%)

1

gc
0 (0.0%)

of 1 (5.3%)

runtime.parfordo
0 (0.0%)

of 1 (5.3%)

1

1

github.com/nictuku/dht.(*nTree).isOK
0 (0.0%)

of 1 (5.3%)

1

github.com/nictuku/dht.(*nTree).traverse
0 (0.0%)

of 1 (5.3%)

1

1

11

1

github.com/nictuku/nettools.DottedPortToBinary
0 (0.0%)

of 1 (5.3%)

1

1

hash_insert
0 (0.0%)

of 1 (5.3%)

1
hash_next

1 (5.3%)

markroot
0 (0.0%)

of 1 (5.3%)

scanblock
1 (5.3%)

1

net.(*UDPAddr).sockaddr
0 (0.0%)

of 1 (5.3%)

net.ipToSockaddr
0 (0.0%)

of 1 (5.3%)

1

1

net.runtime_pollWait
0 (0.0%)

of 1 (5.3%)

1

net.itod
0 (0.0%)

of 1 (5.3%)

1

runtime.concatstring
0 (0.0%)

of 1 (5.3%)

1

1

1

netpollblock
1 (5.3%)

1

1

1

runtime.mapassign
0 (0.0%)

of 1 (5.3%)

1

1

1

1

sync.(*Mutex).Lock
0 (0.0%)

of 1 (5.3%)

sync/atomic.CompareAndSwapUint32
1 (5.3%)

1

1

1

Figure 4.4.: The call graph from profiling a run of the find_infohash_and_waitwas use-
ful to understand the relationships between the various undocumented pri-
vate functions of the library. This is hard to see on paper, but seeing as it is
a vectorial graph, those with a digital copy of this document can blow it up
without losing any quality.

32

Nicholas Helke

IGD on the Local Area Network (LAN)
a) First the client sends a multicast HTTP Request with method M-SEARCH and a

ST header indicating the type of device the client wishes to find.
b) The client then listens on the User Datagram Protocol (UDP) socket it used

to send the search for HTTP replies from available devices matching the re-
quested type and in particular the SOAP endpoint for further UPnP interac-
tion.

2. Once the device has been discovered, the client can control it though SOAP calls.
For port mapping a single request suffices in most cases.

a) The client request a particular port mapping from the IGD.
b) The IGD replies with the mapping or an error
c) If an error was returned the client may try again from 2a

Before writing my own UPnP port mapping library I did search for SSDP libraries
written in Go. This search produced two results, a completely undocumented pack-
age and a reasonably well documented subpackage of go-sonos10 which looked quite
promising. After failing to be able to get the example code to produce any results, closer
inspection of the library’s code revealed:

func (this *ssdpDefaultManager) ssdpIncludeNotification(msg *ssdpNotifyMessage) {
/*TODO*/

}

So much for documentation then! While I was looking into patching the missing parts
of the library I uncovered three other issues. Its API required, for some unknown reason,
that the API-user choose which port number to use for its otherwise completely internal
socket. The problem was that if the port was already occupied the API didn’t simply
return an error, it panicked and exited the whole program. This struck me as a rather
crippling race-time condition, how can I ever be sure that the port I think is free will
still be free when the API gets around to creating the socket. This issue coupled with
concerns I had about the maintainability of the code which was not in its own repository,
led me to implement just the parts of SSDP I needed and integrate them directly into
the code of GoUPnPC.

Using a network dump of the SSDP packets generated by MiniUPnPc, its code and
the standard [10] I implemented just what was necessary of SSDP in order to find the
IGD and nothing more.

SSDP uses HTTP over UDP for communication. One of Go’s strengths is its rich stan-
dard library which includes an HTTP package. Initially when I was writing my solution
I used the facilities of the standard HTTP package to modify the used network transport.
However I encountered some issues with URL handling. Most notably the standard li-
brary URL package would not accept * as a valid URL, rightly so, however SSDP uses *
as a path with its M-SEARCH verb.
10https://github.com/ianr0bkny/go-sonos

V2 33

https://github.com/ianr0bkny/go-sonos

4. Implementation

My initial reaction was to just work around this issue by overloading the URL package
as well. Soon, however, my work-around code had surpassed the Source Lines of Code
(SLOC) that hand crafting the UDP packet would require, so I switched techniques and
in the process learned a valuable lesson.

We are told time and time again, all through are studies, that we should be lazy and
reuse monolith libraries, which exists for almost anything you can imagine, and which,
we are told, have been developed and tested by better men than we are.

I would tend to agree that such libraries often provide unparalleled quality and reli-
ability as they are developed by specialists in that field who have a very good under-
standing of all the aspects and can therefore not only develop good backend code but
a usually very well thought out specific APIs. Most of the time these specific APIs save
the API-users from making mistakes, however they can get in your way when you are
working on or with an edge-case.

These unforeseen edge-cases do not fit the standard. It would be wrong to modify the
HTTP or any standard library to allow such a bizarre and wrong URL or other edge-
case. So the correct solution, and the lesson learned, is to find a work-around which
impacts the standard library in the least possible way and, importantly, does not depend
on the standard library’s internal behaviour as my initial work around accessing the
encapsulated RawString field inside the standard library’s URL object did.

My second attempt involved manually crafting the request, using plain old string, and
sending it on a raw UDP socket, receiving the response on the raw socket and then pass-
ing that to the HTTP response parsing code from the standard library. It is a testament
to the quality of the standard libraries that this was not only possible but relatively easy,
in particular the accessibility of the HTTP response parsing function.

We now take a look at some actual code, corresponding to what we have just dis-
cussed. It is not the actual code used in the published version of the GoUPnP library,
that can be found in function discoverIGDDescriptionURL in ssdp.go in appendix C. In-
stead we review some snippets based on the actual code, but cleared of some of the error
checking that is done in the real code for the sake of conciseness.

First we quickly take a look at the constants used in said function and in particular we
note the format string, which is used to hand craft the HTTP over UDP request.

const (
ssdpIPv4Addr = "239.255.255.250"
ssdpPort = 1900
format = "M-SEARCH * HTTP/1.1\r\n" +

"HOST: %s:%d\r\n" +
"ST: %s\r\n" +
"MAN: \"ssdp:discover\"\r\n" +
"MX: %d\r\n" +
"\r\n"

)

We recognise in the format string the headers of an HTTP request and we note the use
of * as a URL.

34

Nicholas Helke

This is an opportunity for us to introduce a Go language construct. The const paren-
thetical is just a shortcut to avoid repeating const on each line. It also works with var
and import. For instance, instead of writing:

import "fmt"
import "net"

one could write:

import (
"fmt"
"net"

)

SSDP can only search for one device type at a time or all devices at once. Searching
for all devices at once would potentially yield unreasonably many results as more and
more household appliances connect to our LAN and are UPnP-enabled such as network-
attached storage or smart televisions.

IGDs come in many different flavours. We have already excluded using the catch-all
mechanism with SSDP. Unfortunately therefore, in order to find each and every avail-
able IGD, we must search for the following devices on the network, one at a time:

var deviceTypes = []string{
"urn:schemas-upnp-org:device:InternetGatewayDevice:1",
"urn:schemas-upnp-org:service:WANIPConnection:1",
"urn:schemas-upnp-org:service:WANPPPConnection:1",
"upnp:rootdevice",

}

The last one is a catch all, the standard shouldn’t require it but as MiniUPnP uses it as a
last resort I decided to add it as well.

For each successive type we try to get a response:

1 for i := 0; i < len(deviceTypes); i++ {
2 conn, err := net.ListenUDP("udp4", allIf)
3 if err == nil {
4 // We want to timeout and move on to the next type after a couple of
5 // seconds
6 conn.SetDeadline(time.Now().Add(timeout))
7 // Send multicast request
8 conn.WriteToUDP([]byte(fmt.Sprintf(format, ssdpIPv4Addr, ssdpPort,
9 deviceTypes[i], timeout/time.Second)), broadcast)

10 // Allocate a buffer for the response
11 buf := make([]byte, 1500)
12 for {
13 // Get a response; the above timeout is still in effect as it
14 // should be, so that we never wait indefinitely on any given
15 // iteration
16 n, addr, err := conn.ReadFromUDP(buf)
17 if err != nil {

V2 35

4. Implementation

18 l4g.Info(err)
19 break
20 }
21 // As the http package's response parsing
22 // function requires an associated request
23 // object we let the http package parse our
24 // request as well
25 req, err := http.ReadRequest(bufio.NewReader(bytes.NewReader(
26 requestString)))
27 if err != nil {
28 // Failure to parse the request represents an assertion
29 // failure as we crafted the request ourselves and have
30 // ensured its validity
31 panic(err)
32 }
33 // This is the magic line where we use the http
34 // package to read the response
35 resp, err := http.ReadResponse(bufio.NewReader(bytes.NewReader(
36 buf[:n])), req)
37 // Interpret the response and break out of loop if successful
38 ...
39 }
40 } else {
41 l4g.Warn(err)
42 }
43 }
44 // If we get here we could not find any UPnP devices

As every single method in the library requires at least one round-trip to the IGD, and
in order to offer API-users more flexibility in the way they use the API I decided to make
all the methods asynchronous. One great thing about Go is that concurrency is build
directly into the language. Go uses channels for communication between green-threads
which it calls goroutines. These channels are very similar to Ada task entry-points, both
of which are based on bounded-buffers.

We will use the GetConnectionStatus method as an example:

1 // This method fetches the status of the IGD.
2 //
3 // Errors are indicated by the channel closing before a ConnectionStatus is
4 // returned. Listeners should therefore check at the very least for nil, better
5 // still for channel closure.
6 //
7 // NOTA BENE the channel closes after a successive ConnectionStatus has been
8 // send on it, in order to not leak resources.
9 func (self *IGD) GetConnectionStatus() (ret chan *ConnectionStatus) {

10 // We initialise the channel
11 ret = make(chan *ConnectionStatus)
12

13 // We go do the work in a separate goroutine, the closure has access to the

36

Nicholas Helke

14 // channel we just instanciated so we will be able to manipulate it.
15 go func() {
16 resp, ok := self.soapRequest("GetStatusInfo",
17 statusRequestStringReader(self.upnptype))
18 // In actual fact this goroutine is far more complicated because
19 // obtaining the IGD's status requires several soapRequests
20 // which all have to be successful
21 if ok {
22 // This again is a simplification, just know that ip is
23 // defined from traversing resp
24 ...
25 ret <- &ConnectionStatus{true, ip}
26 return
27 } else {
28 // Error handling
29 ...
30 }
31 // Note how if there is an error, the channel is closed without
32 // ever being send anything, upon success, the channel is only
33 // closed after the ConnectionStatus is consumed
34 close(ret)
35 }()
36

37 // We immediately return the channel to the caller
38 return
39 }

There are quite a few things that need to be noted about this code. First let us quickly
review the method signature on line 9. Right after the keyword func and before the
function name we see a parenthetical naming and specifying the object type that this
method will act on. In go the presence of this this parameter before the function name
is the difference between a function and a method that can only be called on instances.
After the empty parentheses indicating that this method takes no arguments we see an-
other parenthetical, similar to the first. This is the return declaration. We could just
have indicted the type without parentheses, however naming our return value is ad-
vantageous here.

It lets us assign directly to it on line 11, where we initialise the channel, and then, as it
counts as a normal variable within the scope of the function, and therefore is captured
by the closure, so we can freely use it without passing it in the goroutine’s parameters.

Now let us see how easy it is to start a goroutine This can be seen on line 15. This is only
made easier by Go’s support for anonymous functions and closures. The combination
of these features is used to avoid polluting the package namespace with non-reusable
functions (anonymous function) and saves us the trouble of passing the channel to the
goroutine as it automatically capture the calling stack frame (closure).

On line 25 we note how objects are send down a channel with the <- operator. Note
that this is blocking meaning that we will not reach line 36, where the channel is closed,
before the object is consumed by a listener on the channel.

V2 37

4. Implementation

On the same line the & has the same meaning as in C and returns a reference in lieu of
the actual struct. What follows the ampersand is merely Go’s compound literal syntax.
In C this would usually result in non-deterministic behaviour as you would be returning
a reference to an object on a stack frame that by its very definition is about to be popped
off the stack and will no longer exist after the function returns. Go’s compiler has escape
analysis which detects what objects are leaving the scope and automatically generates
the code at compile time to allocate them on the heap at runtime.11

The documentation (lines 1–8) and the comment on lines 31–33 assume some under-
standing of the way channels work. It has been said before that channels are bounded-
buffers. Each object send on the channel must be consumed, however if there are several
listeners (or consumers) one is chosen pseudo-randomly to receive the object and all oth-
ers are left in the waiting state. All waiting listeners on a channel are unconditionally
released upon channel closure, thereby eliminating one possible cause of deadlocking.

We now turn to the use of this function. While there are no limits to what one could do
around calling this function, there are two cases I would like to review, the synchronous
and the asynchronous. The use of channels in Go makes it trivial to do either.

In order to make the function blocking or synchronous, on simply need to instantly
consume the channel:

status := <-igd.GetConnectionStatus()

The := is a nifty way to declare a variable and let the compiler figure out the type. The
above is therefore equivalent to:

var status *ConnectionStatus = <-igd.GetConnectionStatus()

More importantly though, we must note how consuming the channel uses the same <-
operator used to send to it, only this time the channel goes on the right of the arrow.
This is actually quite intuitive.

Recall that the method returns a channel. We can also just store the reference to the
channel, do something else for a bit, and consume it later, at our leisure:

statusChannel := igd.GetConnectionStatus()
// Do something else for a bit, the gorouting we started in GetConnectionStatus
// is working away at the same time
...
status := <-statusChannel

We note how using this pattern of returning a channel for long-running functions
gives the API-user the choice of two very different paradigms without the overhead of
having separate asynchronous and synchronous APIs.

For this reason the entire GoUPnP library uses this pattern, as you can see in the
documentation available from GoDoc12.
11This feature is a very good example of something that Go does much better than C. This is precisely the

sort of improved language feature that I did not wish to deprive myself of by using C.
12http://godoc.org/github.com/nhelke/goupnpc/goupnp

38

http://godoc.org/github.com/nhelke/goupnpc/goupnp

Nicholas Helke

4.4.2. On not implementing PCP née NAT-PMP

NAT Port Mapping Protocol (NAT-PMP) [5] or Port Control Protocol (PCP) [32] as it
should henceforth be known turns out to be more difficult to implement—in Go at least.
It is actually the far superior protocol, and is probably easier to implement than UPnP
using C, as it doesn’t use tedious and expensive-to-parse eXtensible Markup Language
(XML).

In contrast to UPnP’s two-step discovery-then-control process, PCP goes straight to
step two and relies on the OS’s routing table to determine the location of the IGD. This is
far more sensible than using SSDP, and eliminates potential abuses or honest mistakes.
The UPnP protocol does not check that the IGD it is controlling is actually an IGD being
used by the current host, as it never checks the local routing table.

So while PCP may well be technically superior and a more efficient solution than
UPnP, the problem is that there are no cross-platform system calls to inspect a kernel’s
routing table. A possible solution would be to let a platform dependent front-end com-
municate the discovered IGD to the platform independent backend, however this does
not work with the premise of starting the backend as a daemon. Fortunately this prob-
lem can be tabled for the time being as UPnP is more prevalent. The only big name to
support only PCP in their routers is Apple (they in fact authored the original NAT-PMP),
however they are hardly a big player when it comes to the home-router market.

4.4.3. Confronting our hypotheses with reality

After implementing the GoUPnP library we were able to start testing hypothesis from
section 3.2, i.e. that communication is possible between two peers with each other in
their contact lists provided one of them is publicly addressable from the internet, either
directly (rare) or through port mapped NAT (more common).

Fortunately during our testing our hypotheses were largely confirmed. We did how-
ever encounter two scenarios which we had not anticipated:

1. The so-called double-NAT. To our surprise this scenario turned up more than
once, we had initially discarded it, assuming it to be of marginal importance. In
a bizarre twist often the NAT closest to the client supported UPnP but only map-
pings to the second LAN, no control over the Wide Area Network (WAN). This
case is illustrated in figure 4.5(d).

2. The second case which we had not anticipated was certain corporate and higher
educational institutions have firewalls that actively detect Mainline DHT traffic
(and indeed other BitTorrent traffic) and completely prevent it. This case com-
pletely surprised us. We did not expect the Mainline DHT which uses a separate
protocol to BitTorrent’s transfer protocol to be blocked in this manner. This case
is illustrated in figure 4.5(e)

V2 39

4. Implementation

...

Alice

.. Internet..

Bob
(a) Base case where Alice and Bob are both publicly addressable. Communication is possible.

...

Alice

..

NAT

.. Internet..

UPnP-enabled NAT

..

Bob
(b) Alice is behind a NAT and Bob behind a UPnP-enabled router, enabling him to open the necessary ports
for Alice to contact him. Communication is possible.

...

Alice

..

NAT

.. Internet..

NAT

..

Bob
(c) Alice and Bob are behind NATs. Neither NAT is UPnP-enabled. Communication is not possible.

...

Alice

.. Internet..

NAT

..

UPnP-enabled NAT

..

Bob
(d) Alice is directly connected to the internet while and Bob is behind a double NAT where the second one
is UPnP-enabled. Bob can control the UPnP-enabled IGD but this only opens ports to the second LAN.
Communication is not possible.

...

Alice

..

Firewall

.. Internet

(e) Alice is behind a firewall that blocks outgoing Mainline DHT packets. Communication is not possible.
Alice doesn’t know where any other peers are without access to the DHT.

Figure 4.5.: Various connection scenarios where Alice is trying to initiate a connection
with Bob

40

Nicholas Helke

4.5. Security

4.5.1. Public Key Infrastructure

As already discussed in section 3.3, Pretty Good Privacy (PGP) will be used for our Pub-
lic Key Infrastructure (PKI). Fortunately there is a Go library for PGP called openpgp13.

One fiasco I experienced while first trying the library was that the canonical example14

would panic at runtime:
panic: crypto: requested hash function is unavailable

It turns out that the openpgp package has a bug15. It fails to link in a required library.
In Go linking is done automatically based on the packages that are imported into the
application. This failure can be fixed by manually importing the missing package:
import _ "code.google.com/p/go.crypto/ripemd160"

The underscore indicates that we do not use the package ourselves, but merely wish to
link it into the program. Since Go binaries are statically linked, to avoid bloating binaries
unnecessarily it is a compile error to import a package and not use it. The underscore
override this on per package basis.

PGP was originally supposed to be solely the handshake procedure. Ultimately it was
decided to use PGP for all peer exchanges. If you recall the theoretical plan was to use
Advanced Encryption Standard (AES) once the handshake was completed. AES unfor-
tunately was too low level. It would have required rolling our own padding and bound-
ary detecting code. PGP packets conveniently take care of all this for us already. Very
convenient for passing each message on to the protocol decoder, discussed in section 4.6.
A potential draw back of PGP over AES is resource requirements. During development
we did not however encounter any throughput issues with using PGP instead of AES.
It is possible that this might become an issue with other higher throughput low-latency
media such as voice and/or video, but these cases can be handled on an ad hoc basis as
the protocol is designed to be extendible.

4.5.2. Adapting the handshake to symmetric NAT initiators

As discussed in section 3.2, sometimes the initiator will be behind a NAT that cannot
automatically be controlled using UPnP. In this case the initiator has no reliable way
of ascertaining in a decentralized manner his public IP address before the handshake.
In order to handle this case while still meeting the self-imposed requirements for the
handshake, the procedure must be adapted.

We note first of all that while the initiator does not always know his/her own IP ad-
dress, the receiver always knows his/her IP address either because the receiver is di-
rectly connected to the internet and has a public IP or is at least behind an automatically
controllable IGD and has been able to establish this information using UPnP.
13https://code.google.com/p/go.crypto/openpgp
14https://www.imperialviolet.org/2011/06/12/goopenpgp.html
15https://groups.google.com/d/topic/golang-nuts/BLkPi_JvMtI/discussion

V2 41

https://code.google.com/p/go.crypto/openpgp
https://www.imperialviolet.org/2011/06/12/goopenpgp.html
https://groups.google.com/d/topic/golang-nuts/BLkPi_JvMtI/discussion

4. Implementation

{"name":"Nicholas Helke","email":"nhelke@gmail.com","key":138}

&
d4:name14:Nicholas Helke5:email16:nhelke@gmail.com3:keyi138ee

Figure 4.6.: A comparison of a JSON document (above) and a bencoded document (below)
representing the same data.

Instead of supplying the receiver with our IP address we encrypt his/her address in
the packet. This prevents the packet from being replayed to other hosts belonging to the
same user. The handshake is now vulnerable to replay attacks within the hour targeting
the same user at the same location. In order to remove this possibility, receivers must
keep track of random tokens they have received and not allow the same token to be used
twice within the timestamp tolerance period, i.e. one hour.

This should prevent all replay attacks, except when a malicious host intercepts the
initial handshake packet and the receiver never receives it. In this case the malicious
host can replay that packet from any IP address up to one hour after capture.

Another important change compared with the theoretical solution discussed in sec-
tion 3.3 is not using AES with the token as a key, but instead, continuing to use PGP.
This may be changed down the road, but in the mean time we are not constrained by
computing resources and PGP conveniently detects individual messages and buffers
them into a single readable byte slice for us.

4.6. Communication protocol

The terms of reference on page iii call for a platform-independent network protocol to
be defined. This section discusses the design of a conforming network protocol. Initially
as the only requirement is text communication, a basic protocol meeting those require-
ments is presented. The terms of reference also require that the protocol be extendible.
In a later subsection the means by which the protocol might be extended are discussed
and in particular a strategy to enable the use of UDP (necessary for voice and video for
example) while the rest of the protocol is based on TCP.

4.6.1. Basic protocol

In order to meet the requirement of having a platform-independent protocol, and given
that the DHT protocol already uses bencoding for serialisation, I decided to do the same.

Bencoding[6, § bencoding] is the serialisation format invented by Bram Cohen for Tor-
rent files and since used throughout the BitTorrent eco-system, including the Mainline
DHT. It is far more compact than XML and in some ways easier to parse than JavaScript
Object Notation (JSON), as strings are prepended with their size, enabling the parser to
dynamically allocate the correct size items and not have to worry about resizing them.
It is however less human readable as we can see in figure 4.6

42

Nicholas Helke

The theoretical advantage of bencoding over JSON may not actually hold up in the real
world. There are far more JSON libraries than there are bencode ones and I would not be
surprised if all that competition has produced faster JSON libraries (relative to bencode).
Fortunately should we ever decide to make such a change it can be done in a backwards
compatible way as all the protocol’s messages are dictionaries and the starting character
of a dictionary in bencode is “d” whereas JSON uses “{”.

We have just revealed in passing that all the messages of the protocol are bencoded
dictionaries. There are five different message types. The fields contained in the various
dictionaries of the different message types are documented below:

SYN This is the initiating message of the handshake procedure. Its fields are:
token A cryptographically secure random string
dest The destination IP address in decimal-dotted format
timestamp The current epoch time as an integer

SYNACK This is the response to a handshake challenge.
token The token received from the initiator in it SYN-message
source The source IP address in decimal-dotted format
timestamp The current epoch time as an integer

Ping This is a ping request. It can double as an ACK for the handshake procedure. Its
fields are:
token A random token (to track the response)

Pong This is a ping response.
token The token received in the ping request

Text Message This is a text message. Its only field is:
txtMsg The message contents

4.6.2. Extending the protocol

The use of dictionaries makes the protocol easily extendible simply by ensuring that
new message types have dictionary keys that differ from the above described ones. This
lets anyone develop extensions to the protocol.

In order to enable organic enhancements to the protocol by third parties, we specify
that clients must ignore message types they do not recognize and need not reply to
them. It is the responsibility of protocol extenders to develop the message-types and
message-passing diagram necessary in order to establish that a client supports a given
extension. Additionally, in order to better guard ourselves against accidental message-
type conflicts, protocol extenders should prepend their dictionary keys with something
unique to them, such as a domain name they control.

V2 43

4. Implementation

The terms of reference (page iii) are very clear, the protocol must support arbitrary
communication including but not limited to voice and video. Unfortunately the above
does not work for real time voice and video as it uses TCP, whereas real time multimedia
needs UDP.

Another potential advantage of UDP is that it works with full cone NATs. Full cone
NATs are defined in [20] to be NATs that accept incoming UDP packets from any host to
a translated address of a host behind the NAT once at least one packet has been send out,
thereby establishing the translation. Additionally Saikat Guha and Paul Francis estimate
in [13] 70.1’%’ of the world’s NATs to be full cone. This means that if we could use UDP
instead of TCP even for the basic protocol and text, we would be able to achieve better
penetration than the penetration discussed in section 4.4, as even routers not supporting
UPnP could now serve as endpoints.

Our control protocol however is based on TCP and therefore makes the assumption
that its transport is reliable. In order to use this protocol over UDP either the protocol
would have to be changed to build handle retransmits or—

It turns out that Torrent clients, which suffer from similar issues when running in fully
decentralised mode, have already solved this question by developing Micro Transport
Protocol (µTP)16. µTP is a reliable transport layer build on top of UDP which provides
higher level protocols with a means to send traffic reliably over UDP.

As the Mainline DHT only reports a single port number for a given IP address, µTP
connections are normally accepted on the same port as DHT communication. This has
the added bonus of reducing the number of ports that need to be mapped to the outside
world. It does however mean that the two distinct protocols, KRPC and µTP, must be
multiplexed.

The µTP protocol header (version 1) is illustrated in figure 4.7. KRPC is defined as a
bencoded dictionary which means that every KRPC packet starts with a single ASCII-
coded 'd'. Figure 4.8 shows how irrespective of the type of µTP packet, the last four bits
of the first byte do not match between the two protocols and will not until a version 4
is released, at which time one could easily choose to skip that value to avoid ambiguity.
This means that is is indeed possible to multiplex the two protocols.

This nonetheless would require substantive modifications to the DHT library to enable
multiplexing and demultiplexing of the two protocols. Two possibilities were examined:

1. The first would be to patch the DHT library to delegate network communication
to the calling application. This it turns out is pretty unrealistic as the entire library
was based on the idea of it handling its own socket and in particular throttling it
as necessary to defend against bad nodes.

2. The second solution is to add an optional handler that the library can call if it
doesn’t recognize the incoming packet as starting with a 'd'. This solution is prob-
ably the way to go as it would not only be easier to implement but also, unlike the
former, it does not require that the API be changed and therefore stands a better
chance of being merged into the upstream project.

16Originally known as µTorrent Transport Protocol in the seminal paper[24]

44

Nicholas Helke

0 4 8 16 24 32
+-------+-------+---------------+---------------+---------------+
| type | ver | extension | connection_id |
+-------+-------+---------------+---------------+---------------+
| timestamp_microseconds |
+---------------+---------------+---------------+---------------+
| timestamp_difference_microseconds |
+---------------+---------------+---------------+---------------+
| wnd_size |
+---------------+---------------+---------------+---------------+
| seq_nr | ack_nr |
+---------------+---------------+---------------+---------------+

Figure 4.7.: µTP version 1 header defined in [24]

0 4 8
+--------+---------+
| type | 0 0 0 1 | uTorrent transport protocol
+--------+---------+
+------------------+
| 0 1 1 0 0 1 0 0 | KRPC
+------------------+

Figure 4.8.: Comparision of the first 8 bits of µTP version 1 and KRPC

Extending the application to also support incoming connections when behind a full
cone NAT would require either the handshake to be modified one more, as a host behind
a full cone NAT does not know its public IP address and therefore cannot protect itself
adequately against replay attacks. Alternatively the handshake can be left unchanged,
however a means must be found for this host to establish reliably its public IP address.
As we have already discussed in section 3.2 this is far from trivial to achieve in a fully
decentralised manner.

In any event I think the case for the extensibility of this project’s protocol has been
successfully made.

V2 45

4. Implementation

46

Nicholas Helke

5. Conclusion

My work on this thesis was divided into two parts. A first part, in parallel with classes,
during which I explored almost every and any avenue remotely relevant to my subject.
As is to be expected, I met with dead-ends along the way. This is the general idea of
discovery phase and means that during the second part of the project, the part that is
spent full time on the project, the relevant paths are known, and can be explored to
greater depths while simultaneously finishing the accompanying project.

In finishing up a project, the conclusion gives one a valuable opportunity to look back
and draw lessons from things done right and things done wrong. We can ponder the
“what ifs” and what we might do differently, were we ever to redo the project.

The theoretical aspects of this project are quite solid I would argue. It is clearly possi-
ble in theory to develop a completely distributed communication system over Internet
Protocol (IP). Additionally the solution discussed in this paper would, in theory, have
helped in at least Egypt and Libya. In developing the theory however it became clear
to me that this is merely one round in the constant game of cat and mouse and that it is
very likely that means could be found to disrupt this theoretical solution. Perhaps the
most alarming realisation was the extent to which even western governments control
and censor the internet. This leads one to wonder whether the internet can be relied on
at all.

As I was concluding this work, in the last week, it dawned on me how much of my
work is based theory or standards or builds on elements from the BitTorrent ecosystem.
This nonetheless leads me to my only theoretical “what if”. What if I had known of or
discovered during the course of this project other, different ecosystems that I might have
built on. Bitcoin seems to be inspiring other people to come up with new decentralised
systems such as Bitmessage or Namecoin, both mentioned in chapter 2. I still maintain
that those systems do not lend themselves to real time communication, however they
do seem to be better at traversing Network Address Translation (NAT).

On the implementation front I completed every requirement of the terms of reference.
That being said my hope was always to produce widely usable solution, one which
would essentially run itself and provide better overall reliability than any existing server
based solutions. The discovery along the way that NAT is not nearly as easily traversed
as I had hoped, was very disappointing. This means that the overall usability of the
solution is severely limited.

While it is true that the solution proposed in this paper is, under certain circumstances
(such as those in Egypt and Libya during the Arab Spring), more resilient than server
based solutions, users will not judge it on this basis.

In photographers’ circles it is oft said that “the best camera is the one you have with
you.” This adage perfectly summarises the issue with the solution proposed in this

V2 47

5. Conclusion

paper. Most users are not concerned with elegant technical solutions to rare edge-cases.
Even if a solution provides unparalleled access in such cases, users are more concerned
with whether a solution works day to day for them.

It does not help that the main case where my solution cannot receive connections is
from behind corporate firewalls. It is in these circumstances most people spend the
majority time on their computers. Telling them that this solution will work between
homes if their country or region’s internet was ever, all of a sudden, to become detached
from the rest of the internet, is not sufficient to garner their interest.

I truly valued this opportunity to work on my own on a project. It was far from
easy working on alone, particularly after my experiences working in teams on various
projects all through my studies. A lesson I will have learned from this project is that it
is easier to work in teams. In a team, if in doubt about a theoretical or implementation
decision, you can always bounce ideas off another team member. Working alone, I had
to justify every decision I made, using other people’s works, to make sure that I was
not going adrift. Although I also feel a certain sense of satisfaction and pride at having
successfully carried this project to fruition alone.

48

Nicholas Helke

Bibliography

[1] Egypt arrests as undersea internet cable cut off Alexandria. http://www.bbc.co.
uk/news/world-middle-east-21963100, March 2013.

[2] Charles Arthur. Undersea internet cables off Egypt disrupted as navy
arrests three. http://www.guardian.co.uk/technology/2013/mar/28/
egypt-undersea-cable-arrests, March 2013.

[3] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC
2119 (Best Current Practice), March 1997.

[4] Dave Cheney. An introduction to cross compilation with Go. http://dave.
cheney.net/2012/09/08/an-introduction-to-cross-compilation-with-go,
September 2012.

[5] S. Cheshire and M. Krochmal. NAT Port Mapping Protocol (NAT-PMP). RFC 6886
(Informational), April 2013.

[6] Bram Cohen. The BitTorrent protocol specification. http://www.bittorrent.org/
beps/bep_0003.html, January 2008.

[7] Scott A. Crosby and Dan S. Wallach. An analysis of BitTorrent’s two Kademlia-
based DHTs, 2007.

[8] Alberto Dainotti, Claudio Squarcella, Emile Aben, Kimberly C. Claffy, Marco
Chiesa, Michele Russo, and Antonio Pescapé. Analysis of country-wide internet
outages caused by censorship. In Proceedings of the 2011 ACM SIGCOMM Confer-
ence on Internet Measurement Conference, IMC ’11, pages 1–18, New York, NY, USA,
2011. ACM.

[9] UPnP Forum. WANIPConnection:1. Service template version 1.01, November 2001.
Standardized DCP.

[10] UPnP Forum. UPnP. Device architecture version 1.1, October 2008.

[11] Dan Goodin. Skype replaces P2P supernodes with Linux boxes
hosted by Microsoft. http://arstechnica.com/business/2012/05/
skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/,
May 2012.

[12] Glenn Greenwald. NSA collecting phone records of millions of Veri-
zon customers daily. http://www.guardian.co.uk/world/2013/jun/06/
nsa-phone-records-verizon-court-order, June 2013.

V2 49

http://www.bbc.co.uk/news/world-middle-east-21963100
http://www.bbc.co.uk/news/world-middle-east-21963100
http://www.guardian.co.uk/technology/2013/mar/28/egypt-undersea-cable-arrests
http://www.guardian.co.uk/technology/2013/mar/28/egypt-undersea-cable-arrests
http://dave.cheney.net/2012/09/08/an-introduction-to-cross-compilation-with-go
http://dave.cheney.net/2012/09/08/an-introduction-to-cross-compilation-with-go
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://arstechnica.com/business/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/
http://arstechnica.com/business/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/
http://www.guardian.co.uk/world/2013/jun/06/nsa-phone-records-verizon-court-order
http://www.guardian.co.uk/world/2013/jun/06/nsa-phone-records-verizon-court-order

Bibliography

[13] Saikat Guha and Paul Francis. Characterization and measurement of TCP traversal
through NATs and firewalls. In Proceedings of the 5th ACM SIGCOMM conference
on Internet Measurement, IMC ’05, pages 18–18, Berkeley, CA, USA, 2005. USENIX
Association.

[14] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409 (Proposed
Standard), November 1998. Obsoleted by RFC 4306, updated by RFC 4109.

[15] Erik Hjelmvik and Wolfgang John. Breaking and improving protocol obfusca-
tion. Technical Report 2010-05, Department of Computer Science and Engineering,
Chalmers University of Technology, 2010. ISSN 1652-926X.

[16] Jonathan A. Kelner and Petar Maymounkov. Electric routing and concurrent flow
cutting. CoRR, abs/0909.2859, 2009.

[17] T. Kivinen and M. Kojo. More Modular Exponential (MODP) Diffie-Hellman
groups for Internet Key Exchange (IKE). RFC 3526 (Proposed Standard), May 2003.

[18] Chris Lesniewski-Laas and M. Frans Kaashoek. Whānau: a sybil-proof distributed
hash table. In Proceedings of the 7th USENIX conference on Networked systems design
and implementation, NSDI’10, pages 8–8, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[19] Andrew Loewenstern. BitTorrent enhancement proposal #5: DHT protocol. http:
//www.bittorrent.org/beps/bep_0005.html, January 2008.

[20] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC 5766
(Proposed Standard), April 2010.

[21] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system based on the xor metric. In Revised Papers from the First International Workshop
on Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-
Verlag.

[22] Declan McCullagh. NSA docs boast: Now we can wiretap Skype video calls. http:
//news.cnet.com/8301-13578_3-57593339-38/, July 2013.

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009.

[24] Arvid Norberg. BitTorrent enhancement proposal #29: uTorrent transport protocol.
http://www.bittorrent.org/beps/bep_0029.html, June 2009.

[25] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content-addressable network. In Proceedings of the 2001 conference on Ap-
plications, technologies, architectures, and protocols for computer communications, SIG-
COMM ’01, pages 161–172, New York, NY, USA, 2001. ACM.

50

http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
http://news.cnet.com/8301-13578_3-57593339-38/
http://news.cnet.com/8301-13578_3-57593339-38/
http://www.bittorrent.org/beps/bep_0029.html

Nicholas Helke

[26] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities for
NAT (STUN). RFC 5389 (Proposed Standard), October 2008.

[27] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, Mid-
dleware ’01, pages 329–350, London, UK, UK, 2001. Springer-Verlag.

[28] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study
of peer-to-peer file sharing systems. Technical Report UW-CSE-01-06-02, University
of Washington, July 2001.

[29] R. Schollmeier. A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In Peer-to-Peer Computing, 2001. Pro-
ceedings. First International Conference on, pages 101–102, 2001.

[30] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 conference on Applications, technologies, architectures, and pro-
tocols for computer communications, SIGCOMM ’01, pages 149–160, New York, NY,
USA, 2001. ACM.

[31] Jonathan Warren. Bitmessage: A peer-to-peer message authentication and delivery
system. http://www.bitmessage.org, November 2012.

[32] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk. Port Control Protocol
(PCP). RFC 6887 (Proposed Standard), April 2013.

[33] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M.
Masson. Uncovering spoken phrases in encrypted voice over IP conversations.
ACM Trans. Inf. Syst. Secur., 13(4):35:1–35:30, December 2010.

[34] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and
John D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service deploy-
ment. IEEE Journal on Selected Areas in Communications, 22:41–53, 2004.

V2 51

http://www.bitmessage.org

Bibliography

52

Nicholas Helke

Acronyms

µTP Micro Transport Protocol. 44

AES Advanced Encryption Standard. 19, 41, 42

API Application Programming Interface. 24, 30, 31, 33, 34, 36, 38, 44

CUPS Common Unix Printing System. 27

DDoS Distributed Denial of Service. 8, 11, 14, 15

DHT Distributed Hash Table. i, 8–10, 15, 16, 18, 20, 23, 27, 30, 31, 39, 42, 44

DNS Domain Name System. 4, 14

EFF Electronic Frontier Foundation. 4

GPLv2 GNU Public License Version 2. 31, 51

GUI Graphical User Interface. iv, 27

HTML Hyper-Text Markup Language. 27

HTTP Hyper-Text Transport Protocol. 27, 33, 34

ICANN Internet Corporation for Assigned Names and Numbers. 4

IGD Internet Gateway Device. 14, 23, 31, 33, 35, 36, 39, 41

IP Internet Protocol. i, iii, 1, 4, 7, 14–16, 18, 19, 23, 31, 41–45, 47

IPv4 Internet Protocol Version 4. iii, 14

IPv6 Internet Protocol Version 6. 14

ISP Internet Service Provider. 1, 16, 17

JS JavaScript. 27

JSON JavaScript Object Notation. 42, 43

JVM Java Virtual Machine. 26

V2 53

Acronyms

LAN Local Area Network. 33, 35, 39

MSE Message Stream Encryption. 17

NAT Network Address Translation. iii, 7, 14, 23, 31, 39, 41, 44, 45, 47

NAT-PMP NAT Port Mapping Protocol. 39

NDK Native Development Kit. 26

NIC Network Information Centre. 4

NSA National Security Agency. 16

OO Object Oriented. 28

OS Operating System. 27–31, 39

P2P Peer-to-Peer. iii, 1, 3, 7–9, 12, 14–16, 21, 24, 31

PCP Port Control Protocol. 14, 39

PGP Pretty Good Privacy. 20, 41, 42

PKI Public Key Infrastructure. 41

RFC Request for Comments. 17

RPC Remote Procedure Call. 13

SLOC Source Lines of Code. 34

SOAP Simple Object Access Protocol. 31, 33

SSDP Simple Service Discovery Protocol. 31, 33, 35, 39

STUN Session Traversal Utilities for NAT. 14, 15

TCP Transport Control Protocol. 31, 42, 44

TURN Traversal Using Relays around NAT. 15

UDP User Datagram Protocol. 12, 33, 34, 42, 44

UPnP Universal Plug and Play. 14, 23, 31, 33, 35, 39, 41, 44

URL Universal Resource Locator. 30, 33, 34

UTC Coordinated Universal Time. 18

54

Nicholas Helke

VCS Version Control System. 30

VoIP Voice over IP. 14, 15, 17

WAN Wide Area Network. 39

WoT Web of Trust. 19

XML eXtensible Markup Language. 39, 42

V2 55

Acronyms

56

Nicholas Helke

Appendix A.

Dictator Breaker User Manual

A.1. How to run

You run Dictator Breaker by calling its binary from the terminal (on some platforms it
may also be possible to double-click the binary and a terminal will launch automati-
cally).

The program will spit out some output among which a URL where the user interface
can be found and which must be viewed in order to proceed.

Once the interface has been loaded in the browser, you will be prompted to enter the
email address and passphrase of the private key from your local GPG keyring. Once you
have done this, you should be able to follow in the terminal as the backend attempts to
connect to your GPG contacts who are also using Dictator Breaker.

New connections and messages should appear in your browser window.
In order to send a message to an active connection prefix it with the connection iden-

tifier reported on the webpage when the connection was initialised.
Close the program either by closing the browser window or by closing the terminal.

A.2. Command line flags

-cleanupPeriod=15m0s: How often to ping nodes in the network to see if they
are reachable.
-http=8080: port from which to serve the HTML/JS GUI on the loopback interface
-maxNodes=500: Maximum number of nodes to store in the routing table, in

memory. This is the primary configuration for how noisy or aggressive this node
should be. When the node starts, it will try to reach maxNodes/2 as quick as
possible, to form a healthy routing table.
-port=0: use this port for the DHT and communication (UDP and TCP), 0 means

let the operating system choose a random available port
-rateLimit=100: Maximum packets per second to be processed. Beyond this limit

they are silently dropped. Set to -1 to disable rate limiting.
-routers="1.a.magnets.im:6881,router.utorrent.com:6881": Comma separated

IP:Port address of the DHT routeirs used to bootstrap the DHT network.
-savePeriod=5m0s: How often to save the routing table to disk.
-storeDHT=true: whether to store and load the DHT routing table from/to disk

V2 A1

Appendix A. Dictator Breaker User Manual

A2

Nicholas Helke

Appendix B.

Dictator Breaker Code

For archival and review purposes, the source of Dictator Breaker is included below as
it stood at submission time:

B.1. go.nhelke.com/dictator-breaker/main.go

1 package main
2

3 import (
4 "code.google.com/p/go.crypto/openpgp"
5 l4g "code.google.com/p/log4go"
6 "flag"
7 "fmt"
8 "github.com/nhelke/dht"
9 "github.com/nhelke/goupnpc/goupnp"

10 "go.nhelke.com/dictator-breaker/messaging"
11 "go.nhelke.com/dictator-breaker/security"
12 "math/rand"
13 "net"
14 "net/http"
15 "os"
16 "strings"
17 "time"
18)
19

20 const (
21 targetNumPeers = 60
22)
23

24 var (
25 port = flag.Int("port", 0,
26 "use this port for the DHT and communication (UDP and TCP), "+
27 "0 means let the operating system choose a random available port")
28 storeDHTRoutingTable = flag.Bool("storeDHT", true,
29 "whether to store and load the DHT routing table from/to disk")
30 interfacePort = flag.Int("http", 8080,
31 "port from which to serve the HTML/JS GUI on the loopback interface")
32

V2 B1

Appendix B. Dictator Breaker Code

33 connections = make([]*conn, 0, 200)
34 newConnection = make(chan *conn)
35 expConnection = make(chan *conn)
36 newIncMessage = make(chan messaging.Message)
37 newOutMessage = make(chan messaging.Message)
38 me string
39 ws *wsConn
40)
41

42 type conn struct {
43 net net.Conn
44 contact *openpgp.Entity
45 in []string
46 out []string
47 send chan map[string]interface{}
48 closed chan struct{}
49 }
50

51 const (
52 txtMessageKey = "txtMsg"
53 pingKey = "ping"
54 pongKey = "pong"
55)
56

57 // This function should be called the thread that handled the new connection,
58 // i.e. either accept's or dial's thread, and it only returns after the
59 // connection has dropped. It manages its its addition and removal from the
60 // connection slice itself.
61 func (c conn) Run() {
62 c.send = make(chan map[string]interface{})
63 c.closed = make(chan struct{})
64

65 newConnection <- &c
66 defer func() { expConnection <- &c }()
67

68 go func() {
69 for {
70 select {
71 case pack := <-c.send:
72 err := security.EncryptBencode(c.net, c.contact, pack)
73 if err != nil {
74 l4g.Warn(err)
75 close(c.closed)
76 return
77 }
78

79 case _, open := <-c.closed:
80 if !open {
81 c.net.Close()

B2

Nicholas Helke

82 return
83 }
84 }
85 }
86 }()
87

88 for {
89 pack, signer, err := security.DecryptBencode(c.net)
90 if err != nil {
91 l4g.Warn(err)
92 close(c.closed)
93 return
94 } else if signer != c.contact {
95 l4g.Warn("Unexpected signer (%v) on connection %v@%v", signer,
96 c.contact, c.net.RemoteAddr())
97 close(c.closed)
98 return
99 }

100

101 if msg, ok := pack[txtMessageKey]; ok {
102 c.in = append(c.in, msg.(string))
103 ws.out <- fmt.Sprintf("%s says > %s", signer, msg)
104 }
105 if ping, ok := pack[pingKey]; ok {
106 pack := map[string]interface{}{
107 pongKey: ping,
108 }
109 c.send <- pack
110 }
111 if _, ok := pack[pongKey]; ok {
112 l4g.Warn("Sucessfully pinged %v@%v", c.contact, c.net.RemoteAddr())
113 }
114 }
115 }
116

117 func (c conn) SendMessage(msg string) {
118 pack := map[string]interface{}{
119 txtMessageKey: msg,
120 }
121 c.send <- pack
122 }
123

124 func (c conn) Ping() {
125 pack := map[string]interface{}{
126 txtMessageKey: security.RandomToken(),
127 }
128 c.send <- pack
129 }
130

V2 B3

Appendix B. Dictator Breaker Code

131 func main() {
132 // Remove this line in production
133 l4g.NewDefaultLogger(l4g.DEBUG)
134

135 flag.Parse()
136 if len(flag.Args()) > 0 {
137 flag.PrintDefaults()
138 os.Exit(1)
139 }
140

141 igd := <-goupnp.DiscoverIGD()
142 if igd == nil {
143 l4g.Warn("No UPnP IGD found")
144 } else {
145 if *port == 0 {
146 *port = rand.Intn(65536-1024) + 1024
147 }
148 l4g.Warn("Using port %v", *port)
149 tcpPortMap := <-igd.AddLocalPortRedirection(uint16(*port), goupnp.TCP)
150 udpPortMap := <-igd.AddLocalPortRedirection(uint16(*port), goupnp.UDP)
151 if tcpPortMap == nil || udpPortMap == nil {
152 l4g.Error("Unable to map ports")
153 }
154 status := <-igd.GetConnectionStatus()
155 if status != nil {
156 me = status.IP.String()
157 }
158 }
159

160 httpPort := fmt.Sprintf(":%d", *interfacePort)
161 go http.ListenAndServe(httpPort, nil)
162 l4g.Warn("Listening on http://localhost%s", httpPort)
163

164 for {
165 connChan := make(chan *wsConn)
166 connCC <- connChan
167

168 ws = <-connChan
169

170 ws.out <- "GPG Email:"
171 user := <-ws.in
172 ws.out <- "GPG Password:"
173 pass := <-ws.in
174

175 err := security.ReadKeyring(user, pass)
176 if err != nil {
177 l4g.Warn(err)
178 ws.ws.Close()
179 continue

B4

Nicholas Helke

180 } else {
181 break
182 }
183 }
184

185 d, err := dht.NewDHTNode(*port, targetNumPeers, *storeDHTRoutingTable)
186 if err != nil {
187 l4g.Critical(err)
188 os.Exit(1)
189 }
190

191 tick := time.Tick(1 * time.Minute)
192 for {
193 select {
194 case infoHashPeers := <-d.PeersRequestResults:
195 for ih, peers := range infoHashPeers {
196 if len(peers) > 0 {
197 for _, peer := range peers {
198 addr := dht.DecodePeerAddress(peer)
199 l4g.Debug("peer found for infohash %x@%v", addr, ih)
200 dial(string(ih), addr)
201 }
202 }
203 }
204 case newConnection := <-newConnection:
205 connections = append(connections, newConnection)
206 case expConnection := <-expConnection:
207 for i := 0; i < len(connections); i++ {
208 if connections[i] == expConnection {
209 connections[i] = connections[len(connections)-1]
210 connections = connections[0 : len(connections)-1]
211 break
212 }
213 }
214 case <-tick:
215 for _, c := range security.Contacts() {
216 ih := security.FingerprintToString(c.PrimaryKey.Fingerprint)
217 d.PeersRequest(ih, me != "" && ih == security.MyFingerprint())
218 }
219 }
220 }
221 }
222

223 // This should be called on a separate thread
224 func listen(port int) {
225 ln, err := net.Listen("tcp", fmt.Sprintf(":%d", port))
226 if err != nil {
227 l4g.Critical("Failed to open TCP socket on same port as UDP", err)
228 os.Exit(5)

V2 B5

Appendix B. Dictator Breaker Code

229 }
230 for {
231 conn, err := ln.Accept()
232 if err != nil {
233 l4g.Error(err)
234 continue
235 }
236 go accept(conn)
237 }
238 }
239

240 // This should be called on a separate thread
241 func accept(c net.Conn) {
242 l4g.Debug("Accepted connection from %v", c.RemoteAddr())
243

244 reply, signer, err := security.DecryptBencode(c)
245 if err != nil {
246 l4g.Warn(err)
247 c.Close()
248 return
249 }
250

251 token := reply["token"]
252

253 if me != reply["dest"] ||
254 !security.WithinOneHour(reply["timestamp"].(int)) {
255 l4g.Warn(err)
256 c.Close()
257 return
258 }
259

260 synack := map[string]interface{}{
261 "token": token,
262 "timestamp": time.Now().Unix(),
263 "source": me,
264 }
265

266 err = security.EncryptBencode(c, signer, synack)
267 if err != nil {
268 l4g.Warn(err)
269 c.Close()
270 return
271 }
272

273 conn{
274 net: c,
275 contact: signer,
276 }.Run()
277 }

B6

Nicholas Helke

278

279 // This should be called on a separate thread
280 func dial(ih, addr string) {
281 conn, err := net.Dial("tcp", addr)
282 if err != nil {
283 l4g.Debug(err)
284 conn.Close()
285 return
286 }
287

288 token := security.RandomToken()
289 remote := strings.Split(addr, ":")[0]
290 syn := map[string]interface{}{
291 "token": token,
292 "dest": remote,
293 "timestamp": time.Now().Unix(),
294 }
295

296 err = security.EncryptBencode(conn, security.GetKeyByFingerprint(ih), syn)
297 if err != nil {
298 l4g.Warn(err)
299 conn.Close()
300 return
301 }
302

303 synack, signer, err := security.DecryptBencode(conn)
304 if err != nil {
305 l4g.Warn(err)
306 conn.Close()
307 return
308 }
309

310 if ih != security.FingerprintToString(signer.PrimaryKey.Fingerprint) ||
311 synack["token"] != token ||
312 synack["source"] != remote ||
313 !security.WithinOneHour(synack["timestamp"].(int)) {
314 l4g.Warn("Bad SYNACK: %v", synack)
315 }
316

317 }

B.2. go.nhelke.com/dictator-breaker/ws.go

1 package main
2

3 import (
4 "fmt"
5 "net/http"

V2 B7

Appendix B. Dictator Breaker Code

6

7 "code.google.com/p/go.net/websocket"
8 l4g "code.google.com/p/log4go"
9)

10

11 var (
12 connCC = make(chan chan *wsConn)
13 incomingWs = make(chan string)
14)
15

16 type userPass struct {
17 user, pass string
18 }
19

20 type wsConn struct {
21 ws *websocket.Conn
22 in <-chan string
23 out chan<- string
24 }
25

26 func APISocket(ws *websocket.Conn) {
27 select {
28 case connChan := <-connCC:
29 l4g.Debug("Accepting WebSocket connection from %v", ws.RemoteAddr())
30

31 var (
32 in = make(chan string)
33 out = make(chan string)
34)
35

36 go func() {
37 for {
38 var line string
39 _, err := fmt.Fscanln(ws, &line)
40 if err != nil {
41 l4g.Error(err)
42 break
43 }
44 in <- line
45 }
46 }()
47

48 connChan <- &wsConn{
49 ws: ws,
50 in: in,
51 out: out,
52 }
53

54 for {

B8

Nicholas Helke

55 select {
56 case str := <-out:
57 fmt.Fprintln(ws, str)
58 }
59 }
60 default:
61 fmt.Fprintln(ws, "There is already an active session connected to this backend")
62 ws.Close()
63 }
64 }
65

66 func init() {
67 http.Handle("/api", websocket.Handler(APISocket))
68 http.Handle("/", http.FileServer(http.Dir("views")))
69 }

B.3. go.nhelke.com/dictator-breaker/messaging/message.go

1 package messaging
2

3 import (
4 "encoding/json"
5 "go.nhelke.com/dictator-breaker/security"
6 "io"
7 "net"
8)
9

10 type Message struct {
11 conn *net.Conn `json:"-"`
12

13 Type string
14 Token string
15

16 Body map[string]interface{} `json:",omitempty"`
17 }
18

19 func (m *Message) WriteTo(w io.Writer) (err error) {
20 b, err := json.Marshal(m)
21 if err == nil {
22 _, err = w.Write(b)
23 }
24 return
25 }
26

27 func Ping() (m Message) {
28 m.Type = "ping"
29 m.Token = security.RandomToken()
30 return

V2 B9

Appendix B. Dictator Breaker Code

31 }
32

33 func TextMessage(text string) (m Message) {
34 m.Type = "textMessage"
35 m.Token = security.RandomToken()
36 m.Body = make(map[string]interface{})
37 m.Body["txt"] = text
38 return
39 }
40

41 func (m *Message) Ack() (ack Message) {
42 ack = *m
43 ack.Type = "ack"
44 ack.Body = nil
45 return
46 }

B.4. go.nhelke.com/dictator-breaker/messaging/message_test.go

1 package messaging
2

3 import (
4 "bytes"
5 "testing"
6)
7

8 func TestMessageMarshalling(t *testing.T) {
9 msg := Ping()

10 b := new(bytes.Buffer)
11 msg.WriteTo(b)
12 str := string(b.Bytes())
13 t.Log(str)
14 if str != `{"Type":"ping","Token":"4"}` {
15 t.Fail()
16 }
17 }

B.5. go.nhelke.com/dictator-breaker/security/openpgp.go

1 package security
2

3 import (
4 bencode "code.google.com/p/bencode-go"
5 "code.google.com/p/go.crypto/openpgp"
6 l4g "code.google.com/p/log4go"
7 "crypto/rand"
8 "errors"

B10

Nicholas Helke

9 "io"
10 "os"
11 "path"
12 "strings"
13 "time"
14 // This is needed by openpgp, failure to link it into the binary
15 // results in cryptic panics at runtime
16 _ "code.google.com/p/go.crypto/ripemd160"
17)
18

19 var (
20 alice *openpgp.Entity
21 pubring openpgp.EntityList
22)
23

24 func ReadKeyring(email, password string) error {
25 secringFile, err := os.Open(GPGFolderPath("secring.gpg"))
26 if err != nil {
27 return err
28 }
29

30 secring, err := openpgp.ReadKeyRing(secringFile)
31 if err != nil {
32 return err
33 }
34

35 alice = getKeyByEmail(secring, email)
36 if alice == nil {
37 return errors.New("Requested private key not found")
38 }
39

40 err = alice.PrivateKey.Decrypt([]byte(password))
41 if err != nil {
42 return err
43 }
44

45 pubringFile, err := os.Open(GPGFolderPath("pubring.gpg"))
46 if err != nil {
47 return err
48 }
49

50 pubring, err = openpgp.ReadKeyRing(pubringFile)
51 if err != nil {
52 return err
53 }
54

55 pubring = append(pubring, alice)
56

57 return nil

V2 B11

Appendix B. Dictator Breaker Code

58 }
59

60 func GPGFolderPath(filename string) (dir string) {
61 env := os.Environ()
62 for _, e := range env {
63 if strings.HasPrefix(e, "HOME=") {
64 dir = strings.SplitN(e, "=", 2)[1]
65 dir = path.Join(dir, ".gnupg")
66 path.Join(dir, filename)
67 break
68 }
69 }
70 return
71 }
72

73 // Shamelessly taken from the seemingly canonical OpenPGP example for Go at
74 // https://www.imperialviolet.org/2011/06/12/goopenpgp.html
75 func getKeyByEmail(keyring openpgp.EntityList, email string) *openpgp.Entity {
76 for _, entity := range keyring {
77 for _, ident := range entity.Identities {
78 if ident.UserId.Email == email {
79 return entity
80 }
81 }
82 }
83

84 return nil
85 }
86

87 func GetKeyByFingerprint(fingerprint string) *openpgp.Entity {
88 return getKeyByFingerprint(pubring, fingerprint)
89 }
90

91 func getKeyByFingerprint(keyring openpgp.EntityList, fingerprint string) *openpgp.Entity {
92 for _, entity := range keyring {
93 if FingerprintToString(entity.PrimaryKey.Fingerprint) == fingerprint {
94 return entity
95 }
96 }
97

98 return nil
99 }

100

101 func Contacts() openpgp.EntityList {
102 return pubring
103 }
104

105 func MyFingerprint() string {
106 return FingerprintToString(alice.PrimaryKey.Fingerprint)

B12

Nicholas Helke

107 }
108

109 func FingerprintToString(fingerprint [20]byte) string {
110 return string(fingerprint[:])
111 }
112

113 func EncryptBencode(conn io.Writer, bob *openpgp.Entity, msg map[string]interface{}) (err error) {
114 plain, err := openpgp.Encrypt(conn, openpgp.EntityList{bob}, alice, nil, nil)
115 if err != nil {
116 l4g.Warn(err)
117 }
118 err = bencode.Marshal(plain, msg)
119 if err != nil {
120 l4g.Warn(err)
121 }
122 plain.Close()
123

124 return
125 }
126

127 func DecryptBencode(conn io.Reader) (res map[string]interface{},
128 signer *openpgp.Entity, err error) {
129 msg, err := openpgp.ReadMessage(conn, pubring, nil, nil)
130 if err != nil {
131 l4g.Warn(err)
132 return
133 }
134

135 if !msg.IsEncrypted || !msg.IsSigned {
136 err = errors.New("Message was not encrypted or not signed")
137 return
138 }
139

140 signer = msg.SignedBy.Entity
141

142 err = bencode.Unmarshal(msg.UnverifiedBody, res)
143 if err != nil {
144 l4g.Warn(err)
145 return
146 }
147

148 if msg.SignatureError != nil {
149 err = errors.New("MESSAGE SIGNATURE WRONG! MESSAGE TAMPERING DETECTED!")
150 }
151 return
152 }
153

154 func RandomToken() string {
155 b := make([]byte, 32)

V2 B13

Appendix B. Dictator Breaker Code

156 n, err := io.ReadFull(rand.Reader, b)
157 if n != len(b) || err != nil {
158 panic("Programming error, there is no reason for this to fail")
159 }
160 return string(b)
161 }
162

163 func WithinOneHour(epoch int) bool {
164 now := time.Now()
165 oneHourFromNow := now.Add(1 * time.Hour)
166 oneHourAgo := now.Add(-1 * time.Hour)
167 x := time.Unix(int64(epoch), 0)
168 return oneHourFromNow.After(x) && oneHourAgo.Before(x)
169 }

B.6. go.nhelke.com/dictator-breaker/security/openpgp_test.go

1 package security
2

3 import (
4 "bytes"
5 "fmt"
6 "io/ioutil"
7 "testing"
8

9 "code.google.com/p/go.crypto/openpgp"
10 _ "code.google.com/p/go.crypto/ripemd160"
11)
12

13 func TestHandshake(t *testing.T) {
14 alice, err := openpgp.NewEntity("Alice", "", "alice@example.com", nil)
15 if err != nil {
16 t.Error(err)
17 }
18 bob, err := openpgp.NewEntity("Bob", "", "bob@example.com", nil)
19 if err != nil {
20 t.Error(err)
21 }
22

23 buf := new(bytes.Buffer)
24

25 plain, err := openpgp.Encrypt(buf, openpgp.EntityList{bob}, alice, nil, nil)
26 if err != nil {
27 t.Error(err)
28 }
29

30 handshake := "Whatever"
31 fmt.Fprintf(plain, handshake)

B14

Nicholas Helke

32

33 plain.Close()
34

35 msg, err := openpgp.ReadMessage(buf, openpgp.EntityList{alice, bob}, nil, nil)
36 if err != nil {
37 t.Error(err)
38 }
39

40 if !msg.IsEncrypted || !msg.IsSigned {
41 t.Fail()
42 }
43

44 res, err := ioutil.ReadAll(msg.UnverifiedBody)
45 if err != nil {
46 t.Error(err)
47 }
48

49 if msg.SignatureError != nil || string(res) != handshake {
50 t.Fail()
51 }
52

53 }

B.7. go.nhelke.com/dictator-breaker/views/chat.html

1 <!DOCTYPE html>
2

3 <head>
4 <meta charset="utf-8" />
5

6 <title>WebSocket Test</title>
7

8 <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min.js"></script>
9 <script src="/jquery-2.0.0.js"></script>

10

11 <style>
12 @import url(http://fonts.googleapis.com/css?family=Inconsolata:400,700);
13 * {
14 font-family: 'Inconsolata', monospace;
15 }
16 #input {
17 border: thin solid black;
18 }
19 </style>
20

21 </head>
22 <body>
23 <h2>Dictator Breaker</h2>

V2 B15

Appendix B. Dictator Breaker Code

24

25 <div id="output"></div>
26 <div id="input" contenteditable="true"></div>
27

28 <script>
29

30 var wsUri = "ws://localhost:8080/api";
31 var output;
32

33 function onOpen(evt)
34 {
35 var msg = $('<div>WebSocket connection opened.</div>');
36 msg.hide()
37 msg.appendTo($("#output"));
38 msg.slideDown();
39 }
40

41 function onClose(evt)
42 {
43 alert("DISCONNECTED");
44 }
45

46 function onMessage(evt)
47 {
48 var msg = $('<div class="incoming">' + evt.data + '</div>');
49 msg.hide()
50 msg.appendTo($("#output"));
51 msg.slideDown();
52 }
53

54 function onError(evt)
55 {
56 alert(evt.data);
57 }
58

59 $(function () {
60 websocket = new WebSocket(wsUri);
61 websocket.onopen = function(evt) { onOpen(evt) };
62 websocket.onclose = function(evt) { onClose(evt) };
63 websocket.onmessage = function(evt) { onMessage(evt) };
64 websocket.onerror = function(evt) { onError(evt) };
65

66 var input = jQuery("#input");
67 var output = $("#output");
68 input.focus();
69 input.keypress(function(e) {
70 if(e.which == 13) {
71 var msg = input.clone().removeAttr("id").removeAttr("contenteditable");
72 websocket.send(msg[0].innerHTML + "\n");

B16

Nicholas Helke

73 msg.hide()
74 msg.addClass("outgoing");
75 msg.appendTo(output);
76 msg.slideDown();
77 input.empty();
78 return false;
79 }
80 });
81 });
82 </script>
83

84 </body>
85

86 </html>
87

88

B.8. Known issues

1. The resources for the user interface must be placed in a subdirectory of the current
working directory, called “views”.

V2 B17

Appendix B. Dictator Breaker Code

B18

Nicholas Helke

Appendix C.

GoUPNPc

GoUPnPc is a GNU Public License Version 2 (GPLv2) licensed1 library for controlling
port mappings of Universal Plug and Play (UPnP)-enabled Internet Gateway Devices
(IGDs). Its canonical source is GitHub2. Its documentation is available from GoDoc3.

For archival and review purposes, the source of GoUPnPc is included below as it stood
at submission time:

C.1. github.com/nhelke/goupnpc/README.mdown

GoUPnPC
=======

GoUPnPC is a MiniUPnPC inspired library I am in the process of developping as
part of my Bachelor's degree thesis. For the time being only IGDv1 is supported.
It offers an API very close to the options provided by the UPnPC command line
client.

Documentation is available at <http://godoc.org/github.com/nhelke/goupnpc>

License

Copyright (C) 2013 Nicholas Helke

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

1As required by the license, a copy is available as appendix E
2https://github.com/nhelke/goupnpc
3http://godoc.org/github.com/nhelke/goupnpc

V2 C1

https://github.com/nhelke/goupnpc
http://godoc.org/github.com/nhelke/goupnpc

Appendix C. GoUPNPc

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

C.2. github.com/nhelke/goupnpc/cmd.go

1 // This command is useful both to test the associated goupnp library and
2 // its source serves as an example of how to use said library.
3 //
4 // Usage instructions can be obtained by running it without any arguments.
5 package main
6

7 import (
8 "fmt"
9 "os"

10 "strconv"
11 "time"
12

13 l4g "code.google.com/p/log4go"
14 "github.com/nhelke/goupnpc/goupnp"
15)
16

17 func main() {
18 l4g.AddFilter("stdout", l4g.WARNING, l4g.NewConsoleLogWriter())
19

20 if len(os.Args) < 2 {
21 printUsage()
22 } else {
23 discover := goupnp.DiscoverIGD()
24 if os.Args[1] == "s" {
25 igd := <-discover
26 status := <-igd.GetConnectionStatus()
27 fmt.Printf("%+v\n", status)
28 } else if os.Args[1] == "l" {
29 igd := <-discover
30 for portMapping := range igd.ListRedirections() {
31 fmt.Println(portMapping)
32 }
33 } else if os.Args[1] == "a" {
34 igd := <-discover
35 port, _ := strconv.Atoi(os.Args[2])
36 proto := goupnp.ParseProtocol(os.Args[3])
37 myMapping := <-igd.AddLocalPortRedirection(uint16(port), proto)
38 fmt.Printf("%+v\n", myMapping)
39 } else {
40 printUsage()
41 }
42 }

C2

Nicholas Helke

43

44 time.Sleep(1 * time.Second)
45 }
46

47 func printUsage() {
48 fmt.Println(
49 `Usage: goupnpc s
50 Print IGD Status
51 goupnpc a port protocol
52 Add local port mapping with internal and external ports equal to
53 port and protocol equal to, well I will let you guess
54 goupnpc l
55 Lists all port mappings on the IGD
56 NOTA BENE No error checking is performed, if anything goes wrong, it will
57 probably panic on nil or something`)
58 }

C.3. github.com/nhelke/goupnpc/goupnp/goupnp.go

1 // A small library for using the port mapping controls of UPnP-enabled IGDs
2 package goupnp
3

4 import (
5 "errors"
6 "fmt"
7 "io/ioutil"
8 "net"
9 "net/http"

10 "net/url"
11 "strings"
12

13 l4g "code.google.com/p/log4go"
14)
15

16 const (
17 TCP protocol = 1 << iota
18 UDP
19)
20

21 // This type provides all the information about port mappings.
22 // It also serves as a handle returned by AddLocalPortRedirection() for use with
23 // DeletePortRedirection().
24 type PortMapping struct {
25 InternalPort uint16
26 ExternalPort uint16
27 Protocol protocol
28 InternalHost net.IP
29 Description string

V2 C3

Appendix C. GoUPNPc

30 Enabled bool
31 Lease uint
32 }
33

34 func (self *PortMapping) String() string {
35 return fmt.Sprint(self.InternalHost, ":", self.InternalPort, "<=",
36 self.ExternalPort, self.Protocol, ` "`, self.Description, `" (`,
37 self.Enabled, ", ", self.Lease, ")")
38 }
39

40 // This opaque type provides a handle to a discovered IGD
41 // Use DiscoverIGD() to obtain such a handle.
42 //
43 // NOTA BENE Using instances of this struct not retured by the appropriate
44 // function call has undefined behaviour
45 type IGD struct {
46 controlURL *url.URL
47 upnptype string
48 iface net.IP
49 }
50

51 func (self *IGD) String() string {
52 return self.controlURL.String()
53 }
54

55 // This function returns a channel which will be sent the first IGD it finds in
56 // traversing `net.InterfaceAddrs()` with IP addresses in the private network
57 // range.
58 //
59 // The channel this function returns should be listened on to avoid leaking
60 // goroutines. Additionally the listener must check whether the channel the
61 // value returned by the channel against nil, to ensure that an IGD was indeed
62 // found.
63 func DiscoverIGD() (ret chan *IGD) {
64 // Create the channel we will return
65 ret = make(chan *IGD)
66

67 // Do the work asynchronously
68 go func() {
69 // For each and every local address in the private network range
70 bindLocalAddrs := localPrivateAddrs()
71 l4g.Debug("Found %d private network interfaces", len(bindLocalAddrs))
72 for i := 0; i < len(bindLocalAddrs); i++ {
73 // Use SSDP to search for a UPnP-enabled IGD
74 descURL, ok := discoverIGDDescriptionURL(bindLocalAddrs[i])
75

76 if ok {
77 // If we found one, we go fetch its description XML
78 resp, err := http.Get(descURL.String())

C4

Nicholas Helke

79 if err == nil {
80 // We got something back, lets not leak it
81 defer resp.Body.Close()
82 // We read in the whole description into memory We might
83 // envisage at a later date putting an upperbound on the
84 // buffer, however there is no risk of buffer overflow, so
85 // it is a low priority
86 body, err := ioutil.ReadAll(resp.Body)
87 if err == nil {
88 l4g.Debug("Description XML:\n%s", string(body))
89 // Parse the XML and extract relevant information
90 upnptype, controlURL, err := getConnectionControlURL(body)
91 if err == nil {
92 var igd IGD
93 // It worked, lets now try and wrap it in an igd struct
94 igd.controlURL, err = url.Parse(controlURL)
95 if err != nil {
96 l4g.Warn("Failed to parse URL %v", controlURL)
97 } else {
98 // The URL was good, lets track the type as
99 // well, in order to make the correct calls down

100 // the line
101 igd.upnptype = upnptype
102 // We now add the local binding address to
103 // enable the simple AddLocalPortRedirection
104 // method
105 igd.iface = bindLocalAddrs[i].IP
106

107 ret <- &igd
108 }
109 } else {
110 l4g.Warn("Bad XML: %v", err)
111 }
112 } else {
113 l4g.Warn("Error reading response")
114 }
115 }
116 }
117 }
118

119 // If we get here we did not find an IGD or have already passed the
120 // information to the channel and it has been read, so we close the
121 // channel This will have the effect of returning nil and will indicate
122 // the closure to listeners.
123 close(ret)
124 }()
125 return
126 }
127

V2 C5

Appendix C. GoUPNPc

128 type ConnectionStatus struct {
129 Connected bool
130 IP net.IP
131 }
132

133 // This method fetches the status of the IGD.
134 //
135 // Errors are indicated by the channel closing before a ConnectionStatus is
136 // returned. Listeners should therefore check at the very least for nil, better
137 // still for channel closure.
138 //
139 // NOTA BENE the channel closes after a successive ConnectionStatus has been
140 // send on it, in order to not leak resources.
141 func (self *IGD) GetConnectionStatus() (ret chan *ConnectionStatus) {
142 // We initialise the channel
143 ret = make(chan *ConnectionStatus)
144

145 // We go do the work in a separate goroutine, the closure has access to the
146 // channel we just instanciated so we will be able to manipulate it.
147 go func() {
148 x, ok := self.soapRequest("GetStatusInfo", statusRequestStringReader(self.upnptype))
149 if ok && strings.EqualFold(x.Body.Status.NewConnectionStatus, "Connected") {
150 y, ok := self.soapRequest("GetExternalIPAddress", externalIPRequestStringReader(self.upnptype))
151

152 if ok {
153 ipString := y.Body.IP.NewExternalIPAddress
154 ip := net.ParseIP(ipString)
155 if ip != nil {
156 ret <- &ConnectionStatus{true, ip}
157 return
158 } else {
159 l4g.Warn("Failed to parse IP string %v", ipString)
160 }
161 } else {
162 l4g.Warn("Failed to get IP address after estabilishing the connection was ok")
163 }
164 } else if ok && strings.EqualFold(x.Body.Status.NewConnectionStatus, "Disconnected") {
165 ret <- &ConnectionStatus{false, nil}
166 }
167 close(ret)
168 }()
169

170 // We immediately return the channel to the caller
171 return
172 }
173

174 // This method creates a port mapping on the IGD with internal, external ports
175 // and protocol respectively equal to the passed port argument (bis) and
176 // protocol

C6

Nicholas Helke

177 //
178 // Errors are indicated by the channel closing before a PortMapping is returned.
179 // Listeners should therefore check at the very least for nil, better still
180 // for channel closure.
181 //
182 // NOTA BENE the channel closes after a successive PortMapping has been send on
183 // it, in order to not leak resources.
184 func (self *IGD) AddLocalPortRedirection(port uint16, proto protocol) (ret chan *PortMapping) {
185 ret = make(chan *PortMapping)
186

187 go func() {
188 description := fmt.Sprintf("goupnp %s %d %s", self.iface, port, proto)
189 _, ok := self.soapRequest("AddPortMapping",
190 createPortMappingStringReader(self.upnptype, port,
191 proto, self.iface, description))
192 if ok {
193 portMapping := PortMapping{
194 InternalPort: port,
195 ExternalPort: port,
196 Enabled: true,
197 Description: description,
198 InternalHost: self.iface,
199 Protocol: proto,
200 }
201

202 ret <- &portMapping
203 }
204 close(ret)
205 }()
206

207 return
208 }
209

210 // BUG(nhelke): NOT IMPLEMENTED � ALWAYS RETURNS ERROR
211 //
212 // Please feel free to submit a pull request to
213 // https://github.com/nhelke/goupnpc and I will be sure to merge it.
214 func (self *IGD) DeletePortRedirection(portMappings ...*PortMapping) (ret chan error) {
215 ret = make(chan error)
216 go func() {
217 ret <- errors.New("Sorry, I haven't implemented this yet. " +
218 "Feel free to submit a pull request to github.com/nhelke/goupnpc " +
219 "and I will be sure to merge it.")
220 close(ret)
221 }()
222 return ret
223 }
224

225 // This method returns a buffered channel which should be iterated over. The

V2 C7

Appendix C. GoUPNPc

226 // channel is closed on after the last port mapping, so iterating over the
227 // channel will not loop forever.
228 func (self *IGD) ListRedirections() (ret chan *PortMapping) {
229 ret = make(chan *PortMapping, 10)
230

231 go func() {
232 var (
233 ok bool = true
234 i uint = 0
235 x *soapEnvelope
236)
237 for ; ; i++ {
238 x, ok = self.soapRequest("GetGenericPortMappingEntry",
239 portMappingRequestStringReader(self.upnptype, i))
240 if ok {
241 portMapping := PortMapping{
242 InternalPort: x.Body.PortMapping.InternalPort,
243 ExternalPort: x.Body.PortMapping.ExternalPort,
244 Enabled: x.Body.PortMapping.Enabled != 0,
245 Description: x.Body.PortMapping.Description,
246 InternalHost: net.ParseIP(x.Body.PortMapping.InternalClient),
247 }
248 portMapping.Protocol = ParseProtocol(x.Body.PortMapping.Protocol)
249 ret <- &portMapping
250 } else {
251 close(ret)
252 break
253 }
254 }
255 }()
256

257 return
258 }
259

260 // Function for parsing a protocol in string form to protocol type for use with
261 // this library's methods. Only TCP and UDP are supported.
262 func ParseProtocol(proto string) (ret protocol) {
263 switch {
264 case strings.EqualFold("tcp", proto):
265 ret = TCP
266 case strings.EqualFold("udp", proto):
267 ret = UDP
268 }
269 return
270 }
271

272 // This function returns true if and only if the passed IP address belongs to
273 // one of the ranges reserved in RFC 1918 for use in private networks
274 //

C8

Nicholas Helke

275 // This function is only part of this package as it is used internally and is
276 // public as it is deemed useful for developers to assertain whether or not a
277 // given external IP address such as one returned by GetConnectionStatus is
278 // public or not and as creating a standalone package just for this one function
279 // seemed excessive.
280 func IsPrivateIPAddress(addr net.IP) bool {
281 ip4 := addr.To4()
282 if ip4 == nil || !ip4.IsGlobalUnicast() {
283 return false
284 }
285 var (
286 aAddr = net.IPv4(10, 0, 0, 0)
287 aMask = net.IPv4Mask(255, 0, 0, 0)
288

289 bAddr = net.IPv4(172, 16, 0, 0)
290 bMask = net.IPv4Mask(255, 240, 0, 0)
291

292 cAddr = net.IPv4(192, 168, 0, 0)
293 cMask = net.IPv4Mask(255, 255, 0, 0)
294)
295

296 return ip4.Mask(aMask).Equal(aAddr) ||
297 ip4.Mask(bMask).Equal(bAddr) ||
298 ip4.Mask(cMask).Equal(cAddr)
299 }

C.4. github.com/nhelke/goupnpc/goupnp/goupnp_test.go

1 package goupnp
2

3 import (
4 "net"
5 "testing"
6)
7

8 func TestIsPrivateIPAddress(t *testing.T) {
9 privateAddrs := []net.IP{

10 net.IPv4(192, 168, 2, 32),
11 net.IPv4(10, 230, 46, 52),
12 net.IPv4(172, 22, 8, 61),
13 }
14

15 for i := 0; i < len(privateAddrs); i++ {
16 if !IsPrivateIPAddress(privateAddrs[i]) {
17 t.Errorf("Incorrectly did not identify %v as a private IPv4 Address", privateAddrs[i])
18 }
19 }
20

V2 C9

Appendix C. GoUPNPc

21 publicAddrs := []net.IP{
22 net.IPv4(184, 85, 61, 15),
23 net.IPv4(137, 164, 29, 67),
24 net.IPv4(8, 8, 8, 8),
25 }
26

27 for i := 0; i < len(publicAddrs); i++ {
28 if IsPrivateIPAddress(publicAddrs[i]) {
29 t.Errorf("Incorrectly identified %v as a private IPv4 Address", publicAddrs[i])
30 }
31 }
32 }

C.5. github.com/nhelke/goupnpc/goupnp/backend.go

1 package goupnp
2

3 import (
4 "bytes"
5 "encoding/xml"
6 "fmt"
7 "io"
8 "io/ioutil"
9 "net"

10 "net/http"
11

12 l4g "code.google.com/p/log4go"
13)
14

15 type protocol int
16

17 func (self protocol) String() string {
18 switch self {
19 case TCP:
20 return "TCP"
21 case UDP:
22 return "UDP"
23 default:
24 return "#(Bad Protocol Value)"
25 }
26 }
27

28 type deviceElement struct {
29 FriendlyName string `xml:"friendlyName"`
30 Manufacturer string `xml:"manufacturer"`
31

32 Services []struct {
33 ServiceType string `xml:"serviceType"`

C10

Nicholas Helke

34 ControlURL string `xml:"controlURL"`
35 } `xml:"serviceList>service"`
36

37 Devices []deviceElement `xml:"deviceList>device",omitempty`
38 }
39

40 type deviceDescription struct {
41 XMLName xml.Name `xml:"urn:schemas-upnp-org:device-1-0 root"`
42

43 SpecVersion struct {
44 Major int `xml:"major"`
45 Minor int `xml:"minor"`
46 } `xml:"specVersion"`
47

48 URLBase string
49

50 Device deviceElement `xml:"device"`
51 }
52

53 const (
54 connectionTypeStringWANIP = "urn:schemas-upnp-org:service:WANIPConnection:1"
55 connectionTypeStringWANPPP = "urn:schemas-upnp-org:service:WANPPPConnection:1"
56)
57

58 func statusRequestStringReader(upnptype string) io.Reader {
59 return bytes.NewReader([]byte(fmt.Sprintf(statusRequestString, upnptype)))
60 }
61

62 const statusRequestString = `<?xml version="1.0"?>
63 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
64 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
65 <s:Body>
66 <u:GetStatusInfo xmlns:u="%s">
67 </u:GetStatusInfo>
68 </s:Body>
69 </s:Envelope>
70 `
71

72 const externalIPRequestString = `<?xml version="1.0"?>
73 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
74 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
75 <s:Body>
76 <u:GetExternalIPAddress xmlns:u="%s"></u:GetExternalIPAddress>
77 </s:Body>
78 </s:Envelope>
79 `
80

81 func externalIPRequestStringReader(upnptype string) io.Reader {
82 return bytes.NewReader([]byte(fmt.Sprintf(externalIPRequestString, upnptype)))

V2 C11

Appendix C. GoUPNPc

83 }
84

85 const portMappingRequestString = `<?xml version="1.0"?>
86 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" ` +
87 `s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>` +
88 `<u:GetGenericPortMappingEntry xmlns:u="%s"><NewPortMappingIndex>%d` +
89 `</NewPortMappingIndex></u:GetGenericPortMappingEntry></s:Body></s:Envelope>
90 `
91

92 func portMappingRequestStringReader(upnptype string, index uint) io.Reader {
93 str := fmt.Sprintf(portMappingRequestString, upnptype, index)
94 return bytes.NewReader([]byte(str))
95 }
96

97 const createPortMappingString = `<?xml version="1.0"?>
98 <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" ` +
99 `s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><s:Body>` +

100 `<u:AddPortMapping xmlns:u="%s"><NewRemoteHost></NewRemoteHost>` +
101 `<NewExternalPort>%d</NewExternalPort><NewProtocol>%s</NewProtocol>` +
102 `<NewInternalPort>%d</NewInternalPort>` +
103 `<NewInternalClient>%s</NewInternalClient><NewEnabled>1</NewEnabled>` +
104 `<NewPortMappingDescription>%s</NewPortMappingDescription>` +
105 `<NewLeaseDuration>0</NewLeaseDuration>` +
106 `</u:AddPortMapping></s:Body></s:Envelope>
107 `
108

109 func createPortMappingStringReader(upnptype string, port uint16,
110 proto protocol, localAddr net.IP, description string) io.Reader {
111 str := fmt.Sprintf(createPortMappingString, upnptype, port, proto, port,
112 localAddr, description)
113 return bytes.NewReader([]byte(str))
114 }
115

116 type soapEnvelope struct {
117 XMLName xml.Name `xml:"http://schemas.xmlsoap.org/soap/envelope/ Envelope"`
118

119 Body struct {
120 IP struct {
121 XMLName xml.Name `xml:"GetExternalIPAddressResponse"`
122

123 NewExternalIPAddress string
124 }
125 Status struct {
126 XMLName xml.Name `xml:"GetStatusInfoResponse"`
127

128 NewConnectionStatus string
129 }
130 PortMapping soapPortMapping `xml:"GetGenericPortMappingEntryResponse"`
131 }

C12

Nicholas Helke

132 }
133

134 type soapPortMapping struct {
135 Protocol string `xml:"NewProtocol"`
136 ExternalPort uint16 `xml:"NewExternalPort"`
137 InternalPort uint16 `xml:"NewInternalPort"`
138 InternalClient string `xml:"NewInternalClient"`
139 Enabled int `xml:"NewEnabled"`
140 Description string `xml:"NewPortMappingDescription"`
141 Lease uint `xml:"NewLeaseDuration"`
142 }
143

144 func (self *IGD) soapRequest(requestType string,
145 requestXML io.Reader) (x *soapEnvelope, ok bool) {
146 req, err := http.NewRequest("POST", self.controlURL.String(), requestXML)
147 if err != nil {
148 panic("Programming Error: This hand crafted http.Request should not be bad")
149 }
150 req.Header.Add("Content-Type", "text/xml")
151 req.Header.Add("SOAPAction",
152 `"`+self.upnptype+"#"+requestType+`"`)
153 req.Header.Add("Connection", "Close")
154 req.Header.Add("Cache-Control", "no-cache")
155 req.Header.Add("Pragma", "no-cache")
156

157 resp, err := http.DefaultClient.Do(req)
158 if err == nil {
159 // We got something back, lets not leak it
160 defer resp.Body.Close()
161

162 if resp.StatusCode != http.StatusOK {
163 return
164 }
165

166 body, err := ioutil.ReadAll(resp.Body)
167 if err == nil {
168 l4g.Debug("SOAP Response:\n%s", string(body))
169 err := xml.Unmarshal(body, &x)
170 if err == nil {
171 ok = true
172 } else {
173 l4g.Warn(err)
174 }
175 } else {
176 l4g.Warn(err)
177 }
178 } else {
179 l4g.Warn(err)
180 }

V2 C13

Appendix C. GoUPNPc

181

182 return
183 }

C.6. github.com/nhelke/goupnpc/goupnp/backend_test.go

1 package goupnp
2

3 import (
4 "encoding/xml"
5 "testing"
6)
7

8 const exampleBelkinSOAP = `<?xml version="1.0"?>
9 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

10 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
11 <SOAP-ENV:Body>
12 <m:GetStatusInfoResponse
13 xmlns:m="urn:schemas-upnp-org:service:WANIPConnection:1">
14 <NewConnectionStatus>Connected</NewConnectionStatus>
15 <NewLastConnectionError>ERROR_NONE</NewLastConnectionError>
16 <NewUptime>194979</NewUptime></m:GetStatusInfoResponse></SOAP-ENV:Body>
17 </SOAP-ENV:Envelope>
18 `
19

20 func TestSOAPParsing(t *testing.T) {
21 var x soapEnvelope
22 err := xml.Unmarshal([]byte(exampleBelkinSOAP), &x)
23 if err != nil {
24 t.Errorf("%v", err)
25 } else if status := x.Body.Status.NewConnectionStatus; status != "Connected" {
26 t.Errorf("Status incorrectly parsed as %v", status)
27 }
28 }
29

30 const exampleBelkinPortMappingResponse = `<?xml version="1.0"?>
31 <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
32 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
33 <SOAP-ENV:Body><m:GetGenericPortMappingEntryResponse
34 xmlns:m="urn:schemas-upnp-org:service:WANIPConnection:1">
35 <NewRemoteHost></NewRemoteHost>
36 <NewExternalPort>5900</NewExternalPort>
37 <NewProtocol>TCP</NewProtocol>
38 <NewInternalPort>5901</NewInternalPort>
39 <NewInternalClient>192.168.2.5</NewInternalClient>
40 <NewEnabled>1</NewEnabled>
41 <NewPortMappingDescription>cPM.Port.Map.ee97f96de8c1647a</NewPortMappingDescription>
42 <NewLeaseDuration>0</NewLeaseDuration>

C14

Nicholas Helke

43 </m:GetGenericPortMappingEntryResponse>
44 </SOAP-ENV:Body>
45 </SOAP-ENV:Envelope>
46 `
47

48 func TestPortMappingResponseParsing(t *testing.T) {
49 var x soapEnvelope
50 err := xml.Unmarshal([]byte(exampleBelkinPortMappingResponse), &x)
51 if err != nil {
52 t.Errorf("%v", err)
53 } else {
54 referenceMapping := soapPortMapping{Protocol: "TCP", ExternalPort: 5900,
55 InternalPort: 5901, InternalClient: "192.168.2.5", Enabled: 1,
56 Description: "cPM.Port.Map.ee97f96de8c1647a"}
57 if portMapping := x.Body.PortMapping; portMapping != referenceMapping {
58 t.Errorf("Port mapping incorrectly parsed as %#v", portMapping)
59 }
60 }
61 }

C.7. github.com/nhelke/goupnpc/goupnp/ssdp.go

1 package goupnp
2

3 import (
4 "bufio"
5 "bytes"
6 "encoding/xml"
7 "errors"
8 "fmt"
9 "net"

10 "net/http"
11 "net/url"
12 "time"
13

14 l4g "code.google.com/p/log4go"
15)
16

17 // Returns all local interface IP addresses in the private network range
18 // They are traversed in the order returned by `net.InterfaceAddrs()`
19 func localPrivateAddrs() (ret []*net.UDPAddr) {
20 addrs, err := net.InterfaceAddrs()
21 if err == nil {
22 for i := 0; i < len(addrs); i++ {
23 if ip, ok := addrs[i].(*net.IPNet); ok {
24 if IsPrivateIPAddress(ip.IP) {
25 l4g.Debug("Found private addr %v", ip.IP)
26 ret = append(ret, &net.UDPAddr{ip.IP, 0, ""})

V2 C15

Appendix C. GoUPNPc

27 }
28 }
29 }
30 } else {
31 l4g.Warn(err)
32 }
33 return
34 }
35

36 // This function implements the strict minimum of SSDP in order to discover the
37 // an IGD on the passed localBindAddr. The function blocks until a UPnP enabled
38 // IGD is found or timeout of four seconds expires. Timeouts smaller than 3
39 // seconds are unreasonable This function's behavior is not defined if the
40 // passed localBindAddr is not an IP address in the private network range. You
41 // may wish to use goupnp.localPrivateAddrs() to obtain a list of valid such
42 // addresses for the localhost.
43 func discoverIGDDescriptionURL(localBindAddr *net.UDPAddr) (u *url.URL, ok bool) {
44 const (
45 ssdpIPv4Addr = "239.255.255.250"
46 ssdpPort = 1900
47 format = "M-SEARCH * HTTP/1.1\r\n" +
48 "HOST: %s:%d\r\n" +
49 "ST: %s\r\n" +
50 "MAN: \"ssdp:discover\"\r\n" +
51 "MX: %d\r\n" +
52 "\r\n"
53)
54

55 // These are the various device types we need to M-SEARCH the local subnet
56 // for. The last one is a fallback copied from MiniUPnPC's behavior and is
57 // unlikely to yield usable results
58 //
59 // This slice is sorted from most specific device type to the most general.
60 // Be advised that the below loop relies on this ordering.
61 var deviceTypes = []string{
62 "urn:schemas-upnp-org:device:InternetGatewayDevice:1",
63 "urn:schemas-upnp-org:service:WANIPConnection:1",
64 "urn:schemas-upnp-org:service:WANPPPConnection:1",
65 "upnp:rootdevice",
66 }
67

68 multicastAddr, err := net.ResolveUDPAddr("udp4", fmt.Sprintf("%s:%d",
69 ssdpIPv4Addr, ssdpPort))
70 if err != nil {
71 panic("Programming error: Our UDPAddr is incorrect")
72 }
73

74 conn, err := net.ListenUDP("udp4", localBindAddr)
75 var timeout time.Duration = 4 * time.Second

C16

Nicholas Helke

76 if err == nil {
77 // For each device type, M-SEARCH for it, return the first one found
78 // As deviceTypes is sorted from most specific to least specific type
79 // returning the first should work fine.
80 for i := 0; i < len(deviceTypes); i++ {
81 // We write our own request *à la main* as trying to use Go's
82 // standard library's HTTP package turns out to be require more
83 // code than writing the request by hand, because of the non-
84 // standard URL
85 requestString := []byte(fmt.Sprintf(format, ssdpIPv4Addr, ssdpPort,
86 deviceTypes[i], timeout/time.Second))
87 // Allocate a buffer for the response
88 buf := make([]byte, 1500)
89 // We want to timeout and move on to the next type after a couple of
90 // seconds
91 conn.SetDeadline(time.Now().Add(timeout))
92 // Send multicast request
93 conn.WriteToUDP(requestString, multicastAddr)
94 // Get a response; the above timeout is still in effect as it
95 // should be
96 n, addr, err := conn.ReadFromUDP(buf)
97 if err == nil {
98 // Parse and interpret the response and break if successful
99 l4g.Debug("Received %d bytes from %v", n, addr)

100 req, err := http.ReadRequest(bufio.NewReader(bytes.NewReader(
101 requestString)))
102 if err != nil {
103 // Failure to parse the request represents an assertion
104 // failure as we crafted the request ourselves and have
105 // ensured its validity
106 panic(err)
107 }
108 resp, err := http.ReadResponse(bufio.NewReader(bytes.NewReader(
109 buf[:n])), req)
110 if err == nil {
111 // We got something back, lets not leak it
112 defer resp.Body.Close()
113 l4g.Debug("Discovered device returned:\n%v", resp.Header)
114 // We extract the description URL returned in the Location
115 // header. The UPnP standard ensure
116 urls := resp.Header["Location"]
117 // We must check that the Location header exists as required
118 // by the standard to avoid panicking if we get a bad
119 // response missing a Location header.
120 if len(urls) > 0 {
121 // We have the location, bundle it up into a url.URL
122 // object and return it
123 u, err = url.Parse(urls[0])
124 ok = err == nil

V2 C17

Appendix C. GoUPNPc

125 return
126 } else {
127 l4g.Warn("Response did not contain Location header:\n%v",
128 resp.Header)
129 }
130 } else {
131 l4g.Warn(err)
132 }
133 } else {
134 l4g.Warn(err)
135 }
136 }
137 } else {
138 l4g.Warn(err)
139 }
140 // If we get here we could not find any UPnP devices
141 return // ok is false by default, signaling this failure
142 }
143

144 func extractConnectionControlURL(d deviceElement) (upnptype, url string, ok bool) {
145 for i := 0; i < len(d.Services); i++ {
146 if serviceType := d.Services[i].ServiceType; serviceType == connectionTypeStringWANIP ||
147 serviceType == connectionTypeStringWANPPP {
148 return serviceType, d.Services[i].ControlURL, true
149 }
150 }
151 for i := 0; i < len(d.Devices); i++ {
152 if upnptype, url, ok = extractConnectionControlURL(d.Devices[i]); ok {
153 return
154 }
155 }
156 return
157 }
158

159 func getConnectionControlURL(body []byte) (upnptype, url string, err error) {
160 var x deviceDescription
161 err = xml.Unmarshal(body, &x)
162 if err == nil {
163 var ok bool
164 upnptype, url, ok = extractConnectionControlURL(x.Device)
165 if !ok {
166 err = errors.New("Control URL not found")
167 } else {
168 // The URLs in the DeviceDescription elements are relative
169 url = x.URLBase + url
170 }
171 }
172 return
173 }

C18

Nicholas Helke

C.8. github.com/nhelke/goupnpc/goupnp/ssdp_test.go

1 package goupnp
2

3 import (
4 "testing"
5)
6

7 func TestDescriptionParsing(t *testing.T) {
8 const belkinDescription string = `<?xml version="1.0"?>
9 <root xmlns="urn:schemas-upnp-org:device-1-0">

10 <specVersion>
11 <major>1</major>
12 <minor>0</minor>
13 </specVersion>
14 <URLBase>http://192.168.2.1:80</URLBase>
15 <device>
16 <deviceType>urn:schemas-upnp-org:device:InternetGatewayDevice:1</deviceType>
17 <friendlyName>Belkin N150 Wireless Router</friendlyName>
18 <manufacturer>Belkin International</manufacturer>
19 <manufacturerURL>http://www.Belkin.com</manufacturerURL>
20 <modelDescription>Wireless Router with Ethernet Switch</modelDescription>
21 <modelName>N150 Wireless Router</modelName>
22 <modelNumber>F9K1001</modelNumber>
23 <modelURL>http://www.Belkin.com</modelURL>
24 <serialNumber>201223GB303099</serialNumber>
25 <UDN>uuid:upnp-InternetGatewayDevice-1_0-08863bf24378</UDN>
26 <UPC>00000-00001</UPC>
27 <serviceList>
28 <service>
29 <serviceType>urn:schemas-upnp-org:service:Layer3Forwarding:1</serviceType>
30 <serviceId>urn:upnp-org:serviceId:L3Forwarding1</serviceId>
31 <controlURL>/upnp/service/Layer3Forwarding</controlURL>
32 <eventSubURL>/upnp/service/Layer3Forwarding</eventSubURL>
33 <SCPDURL>/upnp/service/L3Frwd.xml</SCPDURL>
34 </service>
35 </serviceList>
36 <deviceList>
37 <device>
38 <deviceType>urn:schemas-upnp-org:device:WANDevice:1</deviceType>
39 <friendlyName>Belkin N150 Wireless Router</friendlyName>
40 <manufacturer>Belkin International</manufacturer>
41 <manufacturerURL>http://www.Belkin.com</manufacturerURL>
42 <modelDescription>Wireless Router with Ethernet Switch</modelDescription>
43 <modelName>N150 Wireless Router</modelName>
44 <modelNumber>F9K1001</modelNumber>
45 <modelURL>http://www.Belkin.com</modelURL>
46 <serialNumber>201223GB303099</serialNumber>
47 <UDN>uuid:upnp-WANDevice-1_0-08863bf24378</UDN>

V2 C19

Appendix C. GoUPNPc

48 <UPC>00000-00001</UPC>
49 <serviceList>
50 <service>
51 <serviceType>urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1</serviceType>
52 <serviceId>urn:upnp-org:serviceId:WANCommonInterfaceConfig</serviceId>
53 <controlURL>/upnp/service/WANCommonInterfaceConfig</controlURL>
54 <eventSubURL>/upnp/service/WANCommonInterfaceConfig</eventSubURL>
55 <SCPDURL>/upnp/service/WANCICfg.xml</SCPDURL>
56 </service>
57 </serviceList>
58 <deviceList>
59 <device>
60 <deviceType>urn:schemas-upnp-org:device:WANConnectionDevice:1</deviceType>
61 <friendlyName>Belkin N150 Wireless Router</friendlyName>
62 <manufacturer>Belkin International</manufacturer>
63 <manufacturerURL>http://www.Belkin.com</manufacturerURL>
64 <modelDescription>Wireless Router with Ethernet Switch</modelDescription>
65 <modelName>N150 Wireless Router</modelName>
66 <modelNumber>F9K1001</modelNumber>
67 <modelURL>http://www.Belkin.com</modelURL>
68 <serialNumber>201223GB303099</serialNumber>
69 <UDN>uuid:upnp-WANConnectionDevice-1_0-08863bf24378</UDN>
70 <UPC>00000-00001</UPC>
71 <serviceList>
72 <service>
73 <serviceType>urn:schemas-upnp-org:service:WANIPConnection:1</serviceType>
74 <serviceId>urn:upnp-org:serviceId:WANIPConnection</serviceId>
75 <controlURL>/upnp/service/WANIPConnection</controlURL>
76 <eventSubURL>/upnp/service/WANIPConnection</eventSubURL>
77 <SCPDURL>/upnp/service/WANIPCn.xml</SCPDURL>
78 </service>
79 </serviceList>
80 </device>
81 </deviceList>
82 </device>
83 </deviceList>
84 <presentationURL>/index.html</presentationURL>
85 </device>
86 </root>
87 `
88

89 upnptype, url, err := getConnectionControlURL([]byte(belkinDescription))
90 if upnptype != connectionTypeStringWANIP || url != "http://192.168.2.1:80/upnp/service/WANIPConnection" || err != nil {
91 t.Errorf("Type: %v, URL: %v, Error: %v", upnptype, url, err)
92 }
93 }

C20

Nicholas Helke

C.9. Known issues

1. The GoUPnP package must be compiled with Go version 1.1 or later, because of a
bug in the standard “http” package in prior versions of Go.

V2 C21

Appendix C. GoUPNPc

C22

Nicholas Helke

Appendix D.

Patches submitted to open source projects

During this project, a couple of issues with some of the libraries used came to my atten-
tion and I submitted these two patches for them:

D.1. Patch submitted to github.com/nictuku/dht

This patch is discussed in section 4.3

1 From 5eadf6d5a3c57e83e17ce9ceba87b658c46dc553 Mon Sep 17 00:00:00 2001
2 From: Nicholas Helke <nhelke@gmail.com>
3 Date: Thu, 30 May 2013 17:56:40 +0200
4 Subject: [PATCH] Added flag to enable CPU profiling and adapted API to support
5 port number 0 (auto-assign)
6

7 Profiling
8 ---------
9 In order to support profiling it was necessary to modify the main loop and

10 draining function to ensure that the main function exits cleanly.
11 It turns out the profile is not written to disk if the program does not exit
12 cleanly.
13

14 Auto-assigned port number
15 -------------------------
16 I was a little surprised that this was not supported, I guess most torrent
17 client determine their port number and only then set up the DHT.
18 Nonethess less I think this is an interesting feature to have.
19 ---
20 dht.go | 16 +++++++-
21 examples/find_infohash_and_wait/main.go | 66 ++++++++++++++++++++++++++-------
22 krpc.go | 2 +-
23 3 files changed, 67 insertions(+), 17 deletions(-)
24

25 diff --git a/dht.go b/dht.go
26 index d8c2e8f..6eeddca 100644
27 --- a/dht.go
28 +++ b/dht.go
29 @@ -164,6 +164,13 @@ func (d *DHT) PeersRequest(ih string, announce bool) {
30 l4g.Info("DHT: torrent client asking more peers for %x.", ih)
31 }

V2 D1

Appendix D. Patches submitted to open source projects

32

33 +// Port returns the port number assigned to the DHT. This is useful when
34 +// when initialising the DHT with port 0, i.e. automatic port assignment,
35 +// in order to retrieve the actual port number used.
36 +func (d *DHT) Port() int {
37 + return d.port;
38 +}
39 +
40 // AddNode informs the DHT of a new node it should add to its routing table.
41 // addr is a string containing the target node's "host:port" UDP address.
42 func (d *DHT) AddNode(addr string) {
43 @@ -200,6 +207,11 @@ func (d *DHT) DoDHT() {
44 return
45 }
46 d.conn = socket
47 +
48 + // Update the stored port number in case it was set 0, meaning it was
49 + // set automatically by the system
50 + d.port = socket.LocalAddr().(*net.UDPAddr).Port
51 +
52 bytesArena := newArena(maxUDPPacketSize, 500)
53 go readFromSocket(socket, socketChan, bytesArena)
54

55 @@ -228,7 +240,7 @@ func (d *DHT) DoDHT() {
56 rateLimit = 10
57 }
58 }
59 - l4g.Info("DHT: Starting DHT node %x.", d.nodeId)
60 + l4g.Info("DHT: Starting DHT node %x on port %d.", d.nodeId, d.port)
61

62 for {
63 select {
64 @@ -285,7 +297,7 @@ func (d *DHT) DoDHT() {
65 d.processPacket(p)
66 tokenBucket -= 1
67 } else {
68 - // In the future it might be better to avoid dropping things like ping replies.
69 + // TODO In the future it might be better to avoid dropping things like ping replies.
70 totalDroppedPackets.Add(1)
71 }
72 } else {
73 diff --git a/examples/find_infohash_and_wait/main.go b/examples/find_infohash_and_wait/main.go
74 index 3582216..16afece 100644
75 --- a/examples/find_infohash_and_wait/main.go
76 +++ b/examples/find_infohash_and_wait/main.go
77 @@ -1,5 +1,5 @@
78 -// Runs a node on UDP port 11221 that attempts to collect 100 peers for an
79 -// infohash, then keeps running as a passive DHT node.
80 +// Runs a node on system selected UDP port that attempts to collect 100 peers for

D2

Nicholas Helke

81 +// an infohash, then keeps running as a passive DHT node.
82 //
83 // IMPORTANT: if the UDP port is not reachable from the public internet, you
84 // may see very few results.
85 @@ -17,22 +17,41 @@ import (
86 "flag"
87 "fmt"
88 "os"
89 + "os/signal"
90 + "runtime/pprof"
91 "time"
92

93 l4g "code.google.com/p/log4go"
94 - "github.com/nictuku/dht"
95 + "github.com/nhelke/dht"
96 "net/http"
97)
98

99 const (
100 httpPortTCP = 8711
101 - dhtPortUDP = 11221
102 + dhtPortUDP = 0 // 0 to let operating system automatically assign a free port
103 +)
104 +
105 +var (
106 + quit = make(chan bool)
107 + interrupt = make(chan os.Signal)
108 + cpuprofile = flag.String("cpuprofile", "", "write CPU profile to file")
109)
110

111 func main() {
112 flag.Parse()
113 + if *cpuprofile != "" {
114 + f, err := os.Create(*cpuprofile)
115 + if err != nil {
116 + l4g.Critical("Unable to create CPU profile file: %v", err)
117 + } else {
118 + pprof.StartCPUProfile(f)
119 + defer pprof.StopCPUProfile()
120 + }
121 + }
122 +
123 + flag.Parse()
124 // Change to l4g.DEBUG to see *lots* of debugging information.
125 - l4g.AddFilter("stdout", l4g.WARNING, l4g.NewConsoleLogWriter())
126 + l4g.AddFilter("stdout", l4g.INFO, l4g.NewConsoleLogWriter())
127 if len(flag.Args()) != 1 {
128 fmt.Fprintf(os.Stderr, "Usage: %v <infohash>\n\n", os.Args[0])
129 fmt.Fprintf(os.Stderr, "Example infohash: d1c5676ae7ac98e8b19f63565905105e3c4c37a2\n")

V2 D3

Appendix D. Patches submitted to open source projects

130 @@ -62,24 +81,43 @@ func main() {
131 go d.DoDHT()
132 go drainresults(d)
133

134 - for {
135 - // Give the DHT some time to "warm-up" its routing table.
136 - time.Sleep(5 * time.Second)
137 + // Signal handling is necessary so that we exit in a clean state capable
138 + // of producing an optional CPU profile
139 + signal.Notify(interrupt, os.Interrupt)
140

141 - d.PeersRequest(string(ih), false)
142 +F:
143 + for {
144 + select {
145 + case <-time.After(5 * time.Second):
146 + // Give the DHT some time to "warm-up" its routing table.
147 + // TODO Possily create a channel to let the DHT adive us when it is
148 + // nice and hot
149 + d.PeersRequest(string(ih), false)
150 + case <-interrupt:
151 + break F
152 + }
153 }
154 +
155 + quit <- true
156 + <-quit
157 }
158

159 // drainresults loops, printing the address of nodes it has found.
160 func drainresults(n *dht.DHT) {
161 - fmt.Println("=========================== DHT")
162 l4g.Warn("Note that there are many bad nodes that reply to anything you ask.")
163 l4g.Warn("Peers found:")
164 - for r := range n.PeersRequestResults {
165 - for _, peers := range r {
166 - for _, x := range peers {
167 - l4g.Warn("%v", dht.DecodePeerAddress(x))
168 +F:
169 + for {
170 + select {
171 + case r := <-n.PeersRequestResults:
172 + for _, peers := range r {
173 + for _, x := range peers {
174 + l4g.Warn("%v", dht.DecodePeerAddress(x))
175 + }
176 }
177 + case <-quit:
178 + break F

D4

Nicholas Helke

179 }
180 }
181 + quit <- true
182 }
183 diff --git a/krpc.go b/krpc.go
184 index e3ba095..6aa1ac6 100644
185 --- a/krpc.go
186 +++ b/krpc.go
187 @@ -196,7 +196,7 @@ func listen(listenPort int) (socket *net.UDPConn, err error) {
188 // debug.Printf("DHT: Listening for peers on port: %d\n", listenPort)
189 listener, err := net.ListenPacket("udp4", ":"+strconv.Itoa(listenPort))
190 if err != nil {
191 - // debug.Println("DHT: Listen failed:", err)
192 + l4g.Critical("DHT: Listen failed:", err)
193 }
194 if listener != nil {
195 socket = listener.(*net.UDPConn)
196 --
197 1.8.3.1
198

D.2. Patch submitted to github.com/monnand/dhkx

This patch is discussed in section 3.3

1 From 0c763f0ff37752f3a48aca7abb363fb9e255388b Mon Sep 17 00:00:00 2001
2 From: Nicholas Helke <nhelke@gmail.com>
3 Date: Mon, 1 Jul 2013 14:46:04 -0700
4 Subject: [PATCH] Added a CreateGroup method to dhgroup.go
5

6 Also added an associated test to dhkx_test.go and fleshed out the documentation
7 in dhgroup.go
8

9 Fixes monnand#1
10 ---
11 dhgroup.go | 19 +++++++++++++++++++
12 dhkx_test.go | 17 +++++++++++++++--
13 2 files changed, 34 insertions(+), 2 deletions(-)
14

15 diff --git a/dhgroup.go b/dhgroup.go
16 index ea3bec4..e4cfd93 100644
17 --- a/dhgroup.go
18 +++ b/dhgroup.go
19 @@ -47,6 +47,10 @@ func (self *DHGroup) GeneratePrivateKey(randReader io.Reader) (key *DHKey, err e
20 return
21 }
22

23 +// This function fetches a DHGroup by its ID as defined in either RFC 2409 or
24 +// RFC 3526.

V2 D5

Appendix D. Patches submitted to open source projects

25 +//
26 +// If you are unsure what to use use group ID 0 for a sensible default value
27 func GetGroup(groupID int) (group *DHGroup, err error) {
28 if groupID <= 0 {
29 groupID = 14
30 @@ -77,6 +81,21 @@ func GetGroup(groupID int) (group *DHGroup, err error) {
31 return
32 }
33

34 +// This function enables users to create their own custom DHGroup.
35 +// Most users will not however want to use this function, and should prefer
36 +// the use of GetGroup which supplies DHGroups defined in RFCs 2409 and 3526
37 +//
38 +// WARNING! You should only use this if you know what you are doing. The
39 +// behavior of the group returned by this function is not defined if prime is
40 +// not in fact prime.
41 +func CreateGroup(prime, generator *big.Int) (group *DHGroup) {
42 + group = &DHGroup{
43 + g: generator,
44 + p: prime,
45 + }
46 + return
47 +}
48 +
49 func (self *DHGroup) ComputeKey(pubkey *DHKey, privkey *DHKey) (key *DHKey, err error) {
50 if self.p == nil {
51 err = errors.New("DH: invalid group")
52 diff --git a/dhkx_test.go b/dhkx_test.go
53 index c2a7597..aad31da 100644
54 --- a/dhkx_test.go
55 +++ b/dhkx_test.go
56 @@ -19,13 +19,14 @@ package dhkx
57

58 import (
59 "fmt"
60 + "math/big"
61 "testing"
62)
63

64 type peer struct {
65 - priv *DHKey
66 + priv *DHKey
67 group *DHGroup
68 - pub *DHKey
69 + pub *DHKey
70 }
71

72 func newPeer(g *DHGroup) *peer {
73 @@ -88,3 +89,15 @@ func TestKeyExchange(t *testing.T) {

D6

Nicholas Helke

74 }
75 }
76

77 +func TestCustomGroupKeyExchange(t *testing.T) {
78 + p, _ := new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A36210000000000090563", 16)
79 + g := new(big.Int).SetInt64(2)
80 + group := CreateGroup(p, g)
81 + p1 := newPeer(group)
82 + p2 := newPeer(group)
83 +
84 + err := exchangeKey(p1, p2)
85 + if err != nil {
86 + t.Errorf("%v", err)
87 + }
88 +}
89 --
90 1.8.3.1
91

V2 D7

Appendix D. Patches submitted to open source projects

D8

Nicholas Helke

Appendix E.

GNU General Public License Version 2

As some of the code of this project is licensed under the GNU Public License Version 2
(GPLv2), I am legally required to distribute the license herewith:

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their

V2 E1

Appendix E. GNU General Public License Version 2

rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

E2

Nicholas Helke

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

V2 E3

Appendix E. GNU General Public License Version 2

under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by

E4

Nicholas Helke

modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding

V2 E5

Appendix E. GNU General Public License Version 2

those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

E6

Nicholas Helke

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

{{description}}
Copyright (C) {{year}} {{fullname}}

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

V2 E7

Appendix E. GNU General Public License Version 2

{signature of Ty Coon}, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

E8

	Introduction
	Existing works
	Bitmessage
	Completely decentralised DNS
	Dot-P2P
	Namecoin

	Challenges of Completely Decentralised Communication
	Finding Peers in a Completely Decentralised Manner
	Decentralised data storage
	BitTorrent's Mainline DHT
	Kademlia

	Establishing the connection
	Security
	Obfuscation
	Handshake
	Encryption
	Web of Trust

	Ensuring resilience to topology changes

	Implementation
	Designing the program's architecture and choosing a programming language
	Reference implementation's application architecture
	Finding peers
	Establishing a connection
	Using SSDP and UPnP to create port mappings in compatible routers
	On not implementing PCP née NAT-PMP
	Confronting our hypotheses with reality

	Security
	Public Key Infrastructure
	Adapting the handshake to symmetric NAT initiators

	Communication protocol
	Basic protocol
	Extending the protocol

	Conclusion
	Bibliography
	Acronyms
	Dictator Breaker User Manual
	How to run
	Command line flags

	Dictator Breaker Code
	go.nhelke.com/dictator-breaker/main.go
	go.nhelke.com/dictator-breaker/ws.go
	go.nhelke.com/dictator-breaker/messaging/message.go
	go.nhelke.com/dictator-breaker/messaging/message_test.go
	go.nhelke.com/dictator-breaker/security/openpgp.go
	go.nhelke.com/dictator-breaker/security/openpgp_test.go
	go.nhelke.com/dictator-breaker/views/chat.html
	Known issues

	GoUPNPc
	github.com/nhelke/goupnpc/README.mdown
	github.com/nhelke/goupnpc/cmd.go
	github.com/nhelke/goupnpc/goupnp/goupnp.go
	github.com/nhelke/goupnpc/goupnp/goupnp_test.go
	github.com/nhelke/goupnpc/goupnp/backend.go
	github.com/nhelke/goupnpc/goupnp/backend_test.go
	github.com/nhelke/goupnpc/goupnp/ssdp.go
	github.com/nhelke/goupnpc/goupnp/ssdp_test.go
	Known issues

	Patches submitted to open source projects
	Patch submitted to github.com/nictuku/dht
	Patch submitted to github.com/monnand/dhkx

	GNU General Public License Version 2

